LP REGULARITY OF VELOCITY AVERAGES

被引:153
作者
DIPERNA, RJ [1 ]
LIONS, PL [1 ]
MEYER, Y [1 ]
机构
[1] UNIV PARIS 09,CEREMADE,PL DE-LATTRE-DE-TASSIGNY,F-75576 PARIS 16,FRANCE
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1991年 / 8卷 / 3-4期
关键词
VELOCITY AVERAGES; SOBOLEV AND BESOV SPACES; TRANSPORT EQUATIONS; LP MULTIPLIERS;
D O I
10.1016/S0294-1449(16)30264-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present some general regularity results for "velocity averages" i.e. averages in v of functions f(x, v) for which (v. NABLA (x)f) has some given regularity. We are able to cover general regularity classes for both f and (v. NABLA (x)f) and we thus extend various known results. Our methods of proof rely on Littlewood-Paley type decompositions, interpolation arguments and a spectral decomposition adapted to the "velocity direction".
引用
收藏
页码:271 / 287
页数:17
相关论文
共 20 条
[1]  
Agoshkov V.I., 1984, SOV MATH DOKL, V29, P662
[2]  
AGOSHKOV VI, FUNCTIONAL SPACES H1
[3]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[4]   SOME RECENT DEVELOPMENTS IN FOURIER-ANALYSIS AND HP-THEORY ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :1-43
[5]  
CHANG SYA, 1982, AM J MATH, V104, P445
[6]  
DESVILLETTES L, COMMUNICATION
[7]  
DIPERNA R, 1988, CR ACAD SCI I-MATH, V307, P655
[8]  
DIPERNA R, 1988, CR ACAD SCI I-MATH, V306, P343
[9]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[10]  
DIPERNA RJ, 1990, IN PRESS SEMINARIO M