DYNAMIC UNIVERSALITY FOR Z2 AND Z3 LATTICE GAUGE-THEORIES AT FINITE TEMPERATURE

被引:3
作者
BROWER, RC [1 ]
HUANG, SH [1 ]
机构
[1] BOSTON UNIV,DEPT ELECT COMP & SYST ENGN,BOSTON,MA 02215
来源
PHYSICAL REVIEW D | 1991年 / 44卷 / 12期
关键词
D O I
10.1103/PhysRevD.44.3911
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Swendsen-Wang random surface dynamics for Z2 and Z3 gauge theories in 2 + 1 dimensions is applied to the finite-temperature deconfining transition, and the static universality conjecture of Svetitsky and Yaffe is extended to the exponent z for critical dynamics. Our new dynamic universality conjecture (z(RS)d + 1 = z(SW)d) is supported both by a qualitative argument and by numerical simulations that show that the dynamic critical exponents for (2 + 1)-dimensional gauge theories (logarithmic or z(RS) < 0.3 +/- 0.1 and 0.53 +/- 0.03 for Z2 and Z3, respectively) are consistent with the values for the two-dimensional Ising-Potts models (logarithmic or z(SW) = 0.20-0.27 and 0.55 +/- 0.03 for Z2 and Z3, respectively) at the finite-temperature transition.
引用
收藏
页码:3911 / 3917
页数:7
相关论文
共 17 条
[1]  
AIZENMAN M, 1983, COMMUN MATH PHYS, V92, P19, DOI 10.1007/BF01206313
[2]  
[Anonymous], 1983, PHASE TRANSITIONS CR
[3]   CRITICAL ACCELERATION OF LATTICE GAUGE SIMULATIONS [J].
BENAV, R ;
KANDEL, D ;
KATZNELSON, E ;
LAUWERS, PG ;
SOLOMON, S .
JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (1-2) :125-139
[4]   RANDOM SURFACE DYNAMICS FOR Z2 GAUGE-THEORY [J].
BROWER, RC ;
HUANG, SZ .
PHYSICAL REVIEW D, 1990, 41 (02) :708-711
[5]   EMBEDDED DYNAMICS FOR PHI-4 THEORY [J].
BROWER, RC ;
TAMAYO, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (10) :1087-1090
[6]   NATURE OF THE DECONFINING PHASE-TRANSITION IN SU(3) LATTICE GAUGE-THEORY [J].
BROWN, FR ;
CHRIST, NH ;
DENG, YF ;
GAO, MS ;
WOCH, TJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (18) :2058-2061
[7]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[8]   ORDER OF THE DECONFINING PHASE-TRANSITION IN SU(3) LATTICE GAUGE-THEORY [J].
FUKUGITA, M ;
OKAWA, M ;
UKAWA, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (17) :1768-1771
[9]   SYSTEM SIZE DEPENDENCE OF THE AUTOCORRELATION TIME FOR THE SWENDSEN-WANG ISING-MODEL [J].
HEERMANN, DW ;
BURKITT, AN .
PHYSICA A, 1990, 162 (02) :210-214
[10]   RIGOROUS LOWER BOUND ON THE DYNAMIC CRITICAL EXPONENTS OF THE SWENDSEN-WANG ALGORITHM [J].
LI, XJ ;
SOKAL, AD .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :827-830