CONVERGENCE RESULTS FOR SCHUBERTS METHOD FOR SOLVING SPARSE NON-LINEAR EQUATIONS

被引:38
作者
MARWIL, E [1 ]
机构
[1] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
关键词
D O I
10.1137/0716044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:588 / 604
页数:17
相关论文
共 12 条
[1]  
BROYDEN CG, 1970, MATH COMPUT, V24, P365, DOI 10.1090/S0025-5718-1970-0279993-0
[2]   CONVERGENCE OF AN ALGORITHM FOR SOLVING SPARSE NONLINEAR SYSTEMS [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1971, 25 (114) :285-&
[3]  
BROYDEN CG, 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6
[4]  
Dennis J. E., 1971, NONLINEAR FUNCTIONAL, P425
[5]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[6]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[7]   CONVERGENCE OF BROYDENS METHOD FOR NONLINEAR SYSTEMS OF EQUATIONS [J].
DENNIS, JE .
MATHEMATICS OF COMPUTATION, 1971, 25 (115) :559-+
[8]  
Dennis JE Jr, 1970, NUMERICAL METHODS NO, P163
[9]   SURVEY OF SPARSE-MATRIX RESEARCH [J].
DUFF, IS .
PROCEEDINGS OF THE IEEE, 1977, 65 (04) :500-535
[10]  
KANTOROVICH LV, 1959, FUNCTIONAL ANAL NORM