THE STABILITY OF GROWING OR EVAPORATING CRYSTALS

被引:22
作者
GHEZ, R
COHEN, HG
KELLER, JB
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
[2] STANFORD UNIV,DEPT MATH,STANFORD,CA 94305
[3] STANFORD UNIV,DEPT MECH ENGN,STANFORD,CA 94305
[4] ALFRED P SLOANE FDN,NEW YORK,NY 10111
关键词
D O I
10.1063/1.352928
中图分类号
O59 [应用物理学];
学科分类号
摘要
The linear stability of a Stefan-like problem for moving steps is analyzed within the context 0 Burton, Cabrera, and Frank's theory of crystal growth [Philos. Trans. R. Soc. London Ser. A 243, 299 (1951)]. Asymmetry and departures from equilibrium at steps are included. The equations for regular perturbations around the steady state are solved analytically. The stability criterion depends on supersaturation and average step spacing, both experimentally accessible, and on dimensionless combinations of surface diffusivity, surface diffusion length, and adatom capture probabilities at steps, which can be estimated from bond models. This stability criterion is analyzed and presented graphically in terms of these physical parameters.
引用
收藏
页码:3685 / 3693
页数:9
相关论文
共 50 条
[1]  
AMELINCKX S, 1964, SOLID STATE PHYSIC S, V6
[3]   MORPHOLOGICAL STABILITY OF 2-DIMENSIONAL NUCLEUS [J].
AVIGNON, M ;
CHAKRAVERTY, BK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 310 (1501) :277-+
[4]   MORPHOLOGICAL INSTABILITY OF A TERRACE EDGE DURING STEP-FLOW GROWTH [J].
BALES, GS ;
ZANGWILL, A .
PHYSICAL REVIEW B, 1990, 41 (09) :5500-5508
[5]  
Bennema P., 1973, Kristall und Technik, V8, P659, DOI 10.1002/crat.19730080604
[6]  
BENNEMA P, 1966, PHYS STATUS SOLIDI, V17, P263
[7]  
BENNEMA P, 1973, CRYSTAL GROWTH INTRO, P263
[8]  
BENNEMA P, 1966, PHYS STATUS SOLIDI, V17, P255
[9]  
Bentley W.A., 1962, SNOW CRYSTALS
[10]   ELECTRO-CRYSTALLIZATION [J].
BUDEVSKI, E ;
BOSTANOV, V ;
STAIKOV, G .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1980, 10 :85-112