ON THE CHOICE OF THE REGULARIZATION PARAMETER IN NONLINEAR INVERSE PROBLEMS

被引:24
作者
Ito, K. [1 ]
Kunisch, K. [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90024 USA
[2] Graz Tech Univ, Inst Math, A-8010 Graz, Austria
基金
美国国家科学基金会;
关键词
nonlinear least squares; Tikhonov regularization; sensitivity analysis; model functions;
D O I
10.1137/0802019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on regularization techniques for nonlinear ill-posed inverse problems. Tikhonov regularization and regularization due to the use of norm constraints are analyzed. A model function technique is proposed to iteratively determine an optimal regularization parameter or the parameter characterizing the norm constraint, and to estimate the error in the data if it is not known a priori.
引用
收藏
页码:376 / 404
页数:29
相关论文
共 22 条
[1]  
BAUMEISTER J, 1987, STABLE SOLUTIONS INV
[2]   OUTPUT LEAST-SQUARES STABILITY IN ELLIPTIC-SYSTEMS [J].
COLONIUS, F ;
KUNISCH, K .
APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 19 (01) :33-63
[3]  
Dennis J., 1996, NUMERICAL METHODS UN
[4]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[5]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[7]   THE AUGMENTED LAGRANGIAN METHOD FOR PARAMETER-ESTIMATION IN ELLIPTIC-SYSTEMS [J].
ITO, K ;
KUNISCH, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (01) :113-136
[8]  
ITO K., 1992, SIAM J SCI STAT COMP, V12, P884
[9]  
ITO K., SENSITIVITY AN UNPUB
[10]  
Kato T., 1966, PERTURBATION THEORY