THE CONVERGENCE OF OPERATOR APPROXIMATIONS AT TURNING-POINTS

被引:12
作者
MOORE, G [1 ]
SPENCE, A [1 ]
机构
[1] UNIV BATH,SCH MATH,BATH BA2 7AY,AVON,ENGLAND
关键词
Compendex;
D O I
10.1093/imanum/1.1.23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Eigenvalues and eigenfunctions
引用
收藏
页码:23 / 38
页数:16
相关论文
共 19 条
[1]  
Anselone P., 1971, COLLECTIVELY COMPACT
[2]   NUMERICAL-SOLUTION OF A BIFURCATION PROBLEM [J].
ATKINSON, KE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) :584-599
[3]   CONVERGENCE OF APPROXIMATION METHODS TO COMPUTE EIGENELEMENTS OF LINEAR OPERATIONS [J].
CHATELIN, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :939-948
[4]  
Kato T., 1976, PERTURBATION THEORY
[5]  
KELLER H. B., 1977, APPL BIFURCATION THE, P359
[6]  
KELLER HB, 1975, MATH COMPUT, V29, P464, DOI 10.1090/S0025-5718-1975-0371058-7
[7]  
KREISS HO, 1972, MATH COMPUT, V26, P605, DOI 10.1090/S0025-5718-1972-0373296-3
[8]   SOLVING NON-LINEAR EQUATIONS DEPENDING ON A REAL PARAMETER IN CASE OF SINGULAR JACOBIANS [J].
MENZEL, R ;
SCHWETLICK, H .
NUMERISCHE MATHEMATIK, 1978, 30 (01) :65-79
[9]  
MITTELMANN HD, 1980, 45 U DORTM ERG BER
[10]   DEPENDENCE OF CRITICAL PARAMETER BOUNDS ON THE MONOTONICITY OF A NEWTON SEQUENCE [J].
MOONEY, JW ;
VOSS, H ;
WERNER, B .
NUMERISCHE MATHEMATIK, 1979, 33 (03) :291-301