DISTRIBUTION OF MULTIPLE AVOIDED CROSSINGS - NUMERICAL EVALUATION

被引:20
作者
GOLDBERG, J [1 ]
SCHWEIZER, W [1 ]
机构
[1] UNIV TUBINGEN,LEHRSTUHL THEORET ASTROPHYS,W-7400 TUBINGEN 1,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 12期
关键词
D O I
10.1088/0305-4470/24/12/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute numerically the distribution rho-(DELTA-epsilon) of DELTA-epsilon, the local minimum distance (avoided crossing gap size) between neighbouring energy levels of two model systems. We find that lim-DELTA-epsilon --> 0 rho approximately DELTA-epsilon. The result differs from that expected for a GOE model, for which Wilkinson has shown that in the small DELTA-epsilon limit rho-(DELTA-epsilon) is constant. We suggest that the discrepancy arises from parametric correlations which are known to exist but are absent from the GOE.
引用
收藏
页码:2785 / 2791
页数:7
相关论文
共 4 条
[2]  
BERRY MV, 1983, HOUCHES LECTURES, V36, P171
[3]   THE PARAMETRIC NUMBER VARIANCE [J].
GOLDBERG, J ;
SMILANSKY, U ;
BERRY, MV ;
SCHWEIZER, W ;
WUNNER, G ;
ZELLER, G .
NONLINEARITY, 1991, 4 (01) :1-14
[4]  
WILKINSON M, 1988, J PHYS A, V22, P2795