ESTIMATES FOR DISTRIBUTIONS OF THE VORONOI POLYGONS GEOMETRIC CHARACTERISTICS

被引:17
作者
ZUYEV, SA
机构
[1] Department of Pure Mathematics, Moscow Forest Engineering Institute, Moscow
关键词
D O I
10.1002/rsa.3240030205
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An exponential upper bound on the distribution of the Voronoi polygon having n hyperfaces is proved. Using a new integral formula for the Poisson process, the conditional distribution of volume of the fundamental region given n is found to be gamma distribution. This yields an upper bound on distribution of the polygon's volume.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 12 条
[1]  
Brondsted, 1983, INTRO CONVEX POLYTOP, V90
[2]   RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS [J].
GILBERT, EN .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :958-&
[3]   MONTE-CARLO ESTIMATES OF THE DISTRIBUTIONS OF THE RANDOM POLYGONS OF THE VORONOI TESSELLATION WITH RESPECT TO A POISSON-PROCESS [J].
HINDE, AL ;
MILES, RE .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1980, 10 (3-4) :205-223
[4]  
KESTEN H., 1982, PERCOLATION THEORY M
[5]  
MILES R E, 1970, Mathematical Biosciences, V6, P85, DOI 10.1016/0025-5564(70)90061-1
[6]  
Miles R. E., 1982, J APPLIED PROBABIL A, V19, P97, DOI 10.2307/3213553
[7]   AN APPROXIMATE ZERO-ONE LAW [J].
RUSSO, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01) :129-139
[8]   ON THE CRITICAL PERCOLATION PROBABILITIES [J].
RUSSO, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (02) :229-237
[9]  
Santalo L. A., 2004, INTEGRAL GEOMETRY GE
[10]  
Sidorenko A.F., 1988, J SOV MATH, V42, P1766