CRITICAL SLOWING-DOWN IN ISING-MODEL FOR CREUTZ ALGORITHM

被引:20
作者
KUTLU, B
AKTEKIN, N
机构
[1] Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Teknikokullar, 06500 Ankara, Fizik Bölümü
来源
PHYSICA A | 1994年 / 208卷 / 3-4期
关键词
D O I
10.1016/0378-4371(94)00027-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamical critical exponents for the two dimensional Ising model are computed on a cellular automaton from the relaxations of the time displaced correlation and auto-correlation functions for the order parameter and the internal energy at the critical temperatures, and from the nonlinear relaxation time for the order parameter near the critical temperature. The analysis of the data within the frame of the dynamical finite size scaling hypothesis gives z(M) = z(E) = 2.20 and z(M)A = 1.91 and z(E)A = 0.19 for the linear dynamical exponents corresponding, respectively, to the relaxations of the correlation and. the autocorrelation functions for the order parameter and the internal energy, and DELTA(M)nl = 2.07 for the nonlinear dynamical exponent for the order parameter. These values verify the scaling relations between the dynamical exponents.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 24 条
[1]   DETERMINISTIC ISING DYNAMICS [J].
CREUTZ, M .
ANNALS OF PHYSICS, 1986, 167 (01) :62-72
[2]  
CSEPES Z, 1978, J PHYS A-MATH GEN, V11, P575
[3]   DYNAMIC CRITICAL EXPONENT OF THE 2-DIMENSIONAL ISING-MODEL [J].
DAMMANN, B ;
REGER, JD .
EUROPHYSICS LETTERS, 1993, 21 (02) :157-162
[4]   SCALING THEORY OF NONLINEAR CRITICAL RELAXATION [J].
FISHER, ME ;
RACZ, Z .
PHYSICAL REVIEW B, 1976, 13 (11) :5039-5041
[5]   DYNAMIC RELAXATION IN FINITE SIZE SYSTEMS - NONLINEAR AND LINEAR DECAY OF THE MAGNETIZATION [J].
GOLDSCHMIDT, YY .
NUCLEAR PHYSICS B, 1987, 285 (03) :519-534
[6]   FAST ALGORITHM FOR THE SIMULATION OF ISING-MODELS [J].
HERRMANN, HJ .
JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (1-2) :145-151
[7]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[8]   NONEQUILIBRIUM RELAXATION AND INTERFACE ENERGY OF THE ISING-MODEL [J].
ITO, N .
PHYSICA A, 1993, 196 (04) :591-614
[9]   LINEAR AND NONLINEAR RELAXATION AND CLUSTER DYNAMICS NEAR CRITICAL-POINTS [J].
KRETSCHMER, R ;
BINDER, K ;
STAUFFER, D .
JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (04) :267-297
[10]  
KUTLU B, IN PRESS J STAT PHYS