ASYMPTOTICS FOR THE TRANSFORMATION KERNEL DENSITY ESTIMATOR

被引:13
作者
HOSSJER, O [1 ]
RUPPERT, D [1 ]
机构
[1] CORNELL UNIV,COLL ENGN,ITHACA,NY 14853
关键词
BIAS REDUCTION; HIGHER ORDER KERNELS; SMOOTHED EMPIRICAL DISTRIBUTION; TRANSFORMATION TO UNIFORM DISTRIBUTION; VARIABLE BANDWIDTHS;
D O I
10.1214/aos/1176324705
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An asymptotic expansion is provided for the transformation kernel density estimator introduced by Ruppert and Cline. Let h(k) be the bandwidth used in the kth iteration, k = 1, 2,..., t. If all bandwidths are of the same order, the leading bias term of the lth derivative of the tth iterate of the density estimator has the form (b) over bar(t)((l))(x)Pi(k=1)(t) h(k)(2), where the bias factor (b) over bar(t)(x) depends on the second moment of the kernel K, as well as on all derivatives of the density f up to order 2t. In particular, the leading bias term is of the same order as when using an ordinary kernel density estimator with a kernel of order 2t. The leading stochastic term involves a kernel of order 2t that depends on K, h(l) and h(k)/f(x), k = 2,..., t.
引用
收藏
页码:1198 / 1222
页数:25
相关论文
共 16 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[3]  
Bartlett M., 1963, SANKHYA SER A, V25, P245, DOI [10.2307/25049271, DOI 10.2307/25049271]
[4]   CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC PROCESSES AND SOME APPLICATIONS [J].
BICKEL, PJ ;
WICHURA, MJ .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1656-&
[5]   VARIABLE WINDOW WIDTH KERNEL ESTIMATES OF PROBABILITY DENSITIES [J].
HALL, P ;
MARRON, JS .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (01) :37-49
[6]   ON THE BIAS OF VARIABLE BANDWIDTH CURVE ESTIMATORS [J].
HALL, P .
BIOMETRIKA, 1990, 77 (03) :529-535
[7]  
HOSSJER O, 1993, 12 LUND I TECHN DEPT
[8]  
HOSSJER O, 1993, 10 LUND I TECHN DEPT
[9]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[10]  
Rao B L S P, 1983, NONPARAMETRIC FUNCTI