INVERSE PROBLEMS IN FRACTAL CONSTRUCTION - MOMENT METHOD SOLUTION

被引:41
作者
HANDY, CR
MANTICA, G
机构
[1] Department of Physics, Atlanta University, Atlanta
来源
PHYSICA D | 1990年 / 43卷 / 01期
关键词
D O I
10.1016/0167-2789(90)90013-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse problem for several classes of fractals in one and two dimensions can be profitably solved via the application of the classical theory of moments. This new perspective leads to important results on the reconstruction process when only a finite number of moments of the fractal measures are known. While discussing the rigorous aspects of the theory, we also implement it via efficient numerical algorithms. © 1990.
引用
收藏
页码:17 / 36
页数:20
相关论文
共 32 条
[1]  
BAKER G. A., 1975, ESSENTIALS PADE APPR
[2]  
BAKER GA, 1977, PADE RATIONAL APPROX
[3]  
BARNSLEY MF, 1988, BYTE, V13, P215
[4]   SOLUTION OF AN INVERSE PROBLEM FOR FRACTALS AND OTHER SETS [J].
BARNSLEY, MF ;
ERVIN, V ;
HARDIN, D ;
LANCASTER, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (07) :1975-1977
[5]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[6]  
BARNSLEY MF, 1982, B AM MATH SOC, V7, P381, DOI 10.1090/S0273-0979-1982-15043-1
[7]   INFINITE-DIMENSIONAL JACOBI MATRICES ASSOCIATED WITH JULIA SETS [J].
BARNSLEY, MF ;
GERONIMO, JS ;
HARRINGTON, AN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (04) :625-630
[8]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[9]   ORTHOGONAL POLYNOMIALS ON A FAMILY OF CANTOR SETS AND THE PROBLEM OF ITERATIONS OF QUADRATIC MAPPINGS [J].
BESSIS, D ;
MEHTA, ML ;
MOUSSA, P .
LETTERS IN MATHEMATICAL PHYSICS, 1982, 6 (02) :123-140
[10]   MELLIN TRANSFORMS ASSOCIATED WITH JULIA SETS AND PHYSICAL APPLICATIONS [J].
BESSIS, D ;
GERONIMO, JS ;
MOUSSA, P .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (1-2) :75-110