2ND-ORDER ALGORITHMS FOR THE POSYNOMIAL GEOMETRIC-PROGRAMMING DUAL .1. ANALYSIS

被引:3
作者
DEMBO, RS
机构
[1] Yale University, New Haven, Conn.
关键词
Geometric Programming Algorithms; Nonlinear Programming; Second-Order Methods;
D O I
10.1007/BF01588241
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we analyse algorithms for the geometric dual of posynomial programming problems, that make explicit use of second order information. Out of two possible approaches to the problem, it is shown that one is almost always superior. Interestingly enough, it is the second, inferior approach that has dominated the geometric programming literature. © 1979 North-Holland Publishing Company.
引用
收藏
页码:156 / 175
页数:20
相关论文
共 21 条
[1]  
[Anonymous], INTEGER NONLINEAR PR
[2]   MODIFIED CONCAVE SIMPLEX ALGORITHM FOR GEOMETRIC PROGRAMMING [J].
BECK, PA ;
ECKER, JG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1975, 15 (02) :189-202
[3]  
COLVILLE AR, 1968, IBM3202949 NEW YORK
[4]  
DEMBO R, UNPUBLISHED
[6]   DUAL TO PRIMAL CONVERSION IN GEOMETRIC-PROGRAMMING [J].
DEMBO, RS .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 26 (02) :243-252
[7]  
DEMBO RS, 1978, SOM35 YAL U WORK PAP
[8]  
Dinkel J. J., 1974, Mathematical Programming, V7, P181, DOI 10.1007/BF01585514
[9]  
Duffin R.J., 1967, Geometric Programming-Theory and Application
[10]  
Gill P. E., 1974, Mathematical Programming, V7, P311, DOI 10.1007/BF01585529