ITERATION PROCESSES FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPINGS IN L(P) SPACES

被引:48
作者
DENG, L
机构
[1] Department of Mathematics, Chongquig Teachers College, Yongchuan
关键词
D O I
10.1006/jmaa.1994.1416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose X = L(p) (or l(p)), 1 < p less than or equal to 2. Let T: X --> X be a Lipschitzian and strongly accretive map with constant k is an element of (0, 1) and Lipschitz constant L satisfying p(p - 1)L(2) < p - 2(p - 1)(1 - k). Define S: X --> X by Sx = f - Tx + x. For arbitrary x(0) is an element of X, the sequence {x(n)}(n=1)(x) is defined by x(n+1) = (1 - alpha(n))x(n) + alpha(n)Sy(n), y(n) = (1 - beta(n))x(n) + beta(n)SX(n), n greater than or equal to 0, where {alpha(n)}(x)(n=1), {beta(n)}(x)(n=0) are two real sequences satisfying (i) 0 less than or equal to alpha(n) less than or equal to 2(-1){p - 2(p - 1)(1 - k - k beta(n) + L(2) beta(n)) - p(2 - p)L(2)[1 - w beta(n) + (w + L(2) - 1)beta(n)(2)]}{p - 2(p - 1)(1 -k -k beta(n) + L(2) beta(n)) + (p - 1)(2)L(2)[1 - w beta(n) + (w + L(2) - 1)beta(n)(2)] - 1}(-1) for each n, (ii) 0 less than or equal to beta(n) less than or equal to min {w(w + L(2) - 1)(-1), w[4(p - 1)(L(2) - k) + (p - 1)(2)L(2)w]-1} for each n, (iii) Sigma(n) alpha(n) = infinity, where w = p - 2(p - 1)(1 - k) - p(2 - p)L(2). Then {x}(x)(n=1) convergences strongly to the unique solution of Tx = f. Moreover, if alpha(n) = 2(-1){p - 2(p - 1)(1 - k - k beta + L(2) beta) - p(2 p)L(2)[1 - w beta + (w + L(2) - 1)beta(2)]}{p - 2(p - 1)(1 - k - k beta + L(2) beta) + (p - 1)(2)L(2)[1 - w beta + (w + L(2) - 1)beta(2)] - 1}(-1) and beta(n) = beta for each n and some 0 less than or equal to beta less than or equal to min {w(w + L(2) - 1)(-1), w[4(p - 1)(L(2) - k) + (p - 1)(2)L(2)w](-1)} then \\x(n+1) - q\\ less than or equal to p (n/2)\\x(1) - q\\, where q denotes the solution of Tx = f and p = [1 - 4(-1){p - 2(p - 1)(1 - k - k beta + L(2) beta) - p(2 - p) x L(2)[1 - w beta + (w + L(2) - 1)beta(2)]}(2){p - 2(p - 1)(1 - k - k beta = L(2) beta) + (p - 1)(2)L(2)[1 - w beta + (w + L(2) - 1)beta(2)] - 1}(-1)] is an element of (0, 1). A related result details with the iterative approximation of Lipschitz strongly pseudocontractive maps in X. (C) 1994 Academic Press, Inc.
引用
收藏
页码:128 / 140
页数:13
相关论文
共 25 条
[1]  
BOGIN J, 1974, MT219 TECHN PREPR SE
[2]  
Browder F. E., 1976, P S PURE MATH, V18
[4]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[5]   ITERATIVE SOLUTION OF EQUATION Y EPSILON X + TX FOR A MONOTONE OPERATOR T IN HILBERT-SPACE [J].
BRUCK, RE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (06) :1258-1261
[7]   AN ITERATIVE PROCESS FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPINGS IN LP SPACES [J].
CHIDUME, CE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 151 (02) :453-461
[8]   ZEROS OF ACCRETIVE OPERATORS [J].
DEIMLING, K .
MANUSCRIPTA MATHEMATICA, 1974, 13 (04) :365-374
[9]   ON CHIDUME OPEN QUESTIONS [J].
DENG, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 174 (02) :441-449
[10]  
DOTSON WG, 1978, MATH COMPUT, V32, P223, DOI 10.1090/S0025-5718-1978-0470779-8