HOW TO DETERMINE APPROXIMATE MIXMASTER PARAMETERS FROM NUMERICAL EVOLUTION OF EINSTEINS EQUATIONS

被引:17
作者
BERGER, BK
机构
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 02期
关键词
D O I
10.1103/PhysRevD.49.1120
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
To assess the validity of the Belinskii, Khalatnikov, and Lifshitz (BKL) approximation to mixmaster dynamics, it would be useful to evaluate the BKL discrete parameters as a by-product of the numerical solution of Einstein's equations. An algorithm to do this and results for a typical trajectory are presented.
引用
收藏
页码:1120 / 1123
页数:4
相关论文
共 12 条
[1]   CHAOTIC BEHAVIOR IN GENERAL-RELATIVITY [J].
BARROW, JD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 85 (01) :1-49
[2]   OSCILLATORY APPROACH TO SINGULAR POINT IN RELATIVISTIC COSMOLOGY [J].
BELINSKI.VA ;
LIFSHITZ, EM ;
KHALATNI.IM .
SOVIET PHYSICS USPEKHI-USSR, 1971, 13 (06) :745-&
[3]   NOTE ON TIME REVERSIBLE CHAOS IN MIXMASTER DYNAMICS [J].
BERGER, BK .
PHYSICAL REVIEW D, 1993, 47 (08) :3222-3228
[4]   COMMENTS ON THE COMPUTATION OF LIAPUNOV EXPONENTS FOR THE MIXMASTER UNIVERSE [J].
BERGER, BK .
GENERAL RELATIVITY AND GRAVITATION, 1991, 23 (12) :1385-1402
[5]   A NUMERICAL-ANALYSIS OF CHAOTIC BEHAVIOR IN BIANCHI IX MODELS [J].
BURD, AB ;
BURIC, N ;
ELLIS, GFR .
GENERAL RELATIVITY AND GRAVITATION, 1990, 22 (03) :349-363
[6]   CHAOS IN THE MIXMASTER UNIVERSE [J].
CHERNOFF, DF ;
BARROW, JD .
PHYSICAL REVIEW LETTERS, 1983, 50 (02) :134-137
[7]   CHAOTIC AND NONCHAOTIC BEHAVIOR IN THE MIXMASTER DYNAMICS [J].
FERRAZ, K ;
FRANCISCO, G ;
MATSAS, GEA .
PHYSICS LETTERS A, 1991, 156 (7-8) :407-409
[8]   QUALITATIVE AND NUMERICAL STUDY OF BIANCHI-IX MODELS [J].
FRANCISCO, G ;
MATSAS, GEA .
GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (10) :1047-1054
[9]   THE MIXMASTER COSMOLOGY AS A DYNAMIC SYSTEM [J].
HOBILL, D ;
BERNSTEIN, D ;
WELGE, M ;
SIMKINS, D .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (06) :1155-1171
[10]   ON THE STOCHASTICITY IN RELATIVISTIC COSMOLOGY [J].
KHALATNIKOV, IM ;
LIFSHITZ, EM ;
KHANIN, KM ;
SHCHUR, LN ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (1-2) :97-114