CHARACTERIZATION OF PARETO-OPTIMAL SOLUTIONS IN BICRITERION OPTIMIZATION

被引:11
作者
GEARHART, WB
机构
[1] Division of Mathematics, Computer Science, and Systems Design, University of Texas at San Antonio, San Antonio, Texas
关键词
Bicriterion optimization; characterization of Pareto-optimal solutions; noninferior points; Pareto-optimal solutions; vectorial optimization;
D O I
10.1007/BF00933233
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For bicriterion optimization involving objective functions f1 and f2 defined on a decision space X, a condition is presented under which the Pareto-optimal points can be characterized as solutions of the scalar optimization problems: Minimize f1(x), subject to f2(x)≤α, x ∈X, which α ranges over a certain interval. Using this condition, it is shown how the Pareto-optimal points can be so characterized in both convex and nonconvex situations. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:301 / 307
页数:7
相关论文
共 25 条
[1]   CONVEX VECTORIAL OPTIMIZATION IN LINEAR-SPACES [J].
BACOPOULOS, A ;
SINGER, I .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 21 (02) :175-188
[2]  
BACOPOULOS A, 1977, CONVEX VECTORIAL OPT, V23, P473
[3]   VECTOR MAXIMIZATION PROBLEM - PROPER EFFICIENCY AND STABILITY [J].
BENSON, HP ;
MORIN, TL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) :64-72
[4]  
Gearhart W. B., 1974, Journal of Approximation Theory, V10, P49, DOI 10.1016/0021-9045(74)90095-1
[5]   SOLVING BICRITERION MATHEMATICAL PROGRAMS [J].
GEOFFRION, AM .
OPERATIONS RESEARCH, 1967, 15 (01) :39-+
[6]  
Haimes Y.Y., 2011, MULTIOBJECTIVE OPTIM
[7]   COMPUTATIONAL APPROACH TO COMBINED PROBLEM OF OPTIMIZATION AND PARAMETER IDENTIFICATION [J].
HAIMES, YY ;
WISMER, DA .
AUTOMATICA, 1972, 8 (03) :337-&
[8]  
HAIMES YY, 1971, IEEE T SYST MAN CYB, VSMC1, P296
[9]  
HAIMES YY, 1974, J OPTIMIZATION THEOR, V13, P582
[10]  
Ho Y. C., 1970, Journal of Optimization Theory and Applications, V6, P179, DOI 10.1007/BF00926600