The kinetic problems associated with the experimental determination of reactions among complex solidsolution phases at low temperatures have hindered our understanding of the phase relations in greenschist facies rocks. In the absence of reliable experimental data, we have used the new, expanded internally-consistent thermodynamic dataset of Holland and Powell (1990), to present calculated phase equilibria for the system CaO-FeO-MgO-Al2O3-SiO2-H2O-CO2 (CaFMASCH) with quartz in eccess, in the range 400°-500°C at low to intermediate pressures, involving the minerals amphibole, chlorite, anorthite, clinozoisite, dolomite, chloritoid, garnet, margarite, andalusite, and calcite. By solving independent sets of non-linear equations formed from equilibrium relationships, we calculate not only the loci of reactions in pressuretemperature-x(CO2) space, but also the compositions of coexisting minerals in terms of the substitutions, FeMg-1 and (Fe,Mg)SiAl-1Al-1. Invariant, univariant and divariant equilibria are calculated and discussed in relation to naturally-occurring greenschist facies metabasic and siliceous dolomitic mineral assemblages. We thus avoid the use of activity-corrected curves so commonly presented in the literature as a substitute for genuine univariant phase diagram boundaries. © 1990 Springer-Verlag.