A NUMERICAL-METHOD FOR SOLVING PARTIAL-DIFFERENTIAL EQUATIONS ON HIGHLY IRREGULAR EVOLVING GRIDS

被引:234
作者
BRAUN, J [1 ]
SAMBRIDGE, M [1 ]
机构
[1] AUSTRALIAN NATL UNIV, CTR INFORMAT SCI RES, CANBERRA, ACT 0200, AUSTRALIA
关键词
D O I
10.1038/376655a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An efficient numerical method is described for solving partial differential equations in problems where traditional eulerian and lagrangian techniques fail. The approach makes use of the geometrical concept of 'natural neighbours', the properties of which make it suitable for solving problems involving large deformation and solid-fluid interactions on a deforming mesh, without the need for regridding. The approach can also be applied to high-order partial differential equations (such as the Navier-Stokes equation), even in cases where the evolving mesh is highly irregular.
引用
收藏
页码:655 / 660
页数:6
相关论文
共 21 条
[1]  
BARBER B, 1993, GCG53 U MINN GEOM CT
[2]  
Batchelor G. K., 1967, INTRO FLUID DYNAMICS
[3]  
Bathe K.-J., 1975, International Journal for Numerical Methods in Engineering, V9, P353, DOI 10.1002/nme.1620090207
[4]  
Bathe K-J., 2006, FINITE ELEMENT PROCE
[6]  
Delaunay B., 1934, IZV AKAD NAUK SSSR O, P793
[7]  
Finlayson BA., 1972, METHOD WEIGHTED RESI
[8]  
Fortune, 1995, COMPUTING EUCLIDEAN, P225, DOI DOI 10.1142/9789814355858_0006
[9]   A SWEEPLINE ALGORITHM FOR VORONOI DIAGRAMS [J].
FORTUNE, S .
ALGORITHMICA, 1987, 2 (02) :153-174
[10]  
FUNG YC, 1965, F SOLID MECHANICS