MIRROR SYMMETRY FOR 2-PARAMETER MODELS .2.

被引:159
作者
CANDELAS, P
FONT, A
KATZ, S
MORRISON, DR
机构
[1] UNIV TEXAS,DEPT PHYS,THEORY GRP,AUSTIN,TX 78712
[2] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
[3] CENT UNIV VENEZUELA,DEPT FIS,CARACAS 1020A,VENEZUELA
[4] OKLAHOMA STATE UNIV,DEPT MATH,STILLWATER,OK 74078
[5] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
[6] DUKE UNIV,DEPT MATH,DURHAM,NC 27708
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(94)90155-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe in detail the space of the two Kahler parameters of the Calabi-Yau manifold P-4((1,1,1,6,9))[18] by exploiting mirror symmetry. The large complex structure limit of the mirror, which corresponds to the classical large radius limit, is found by studying the monodromy of the periods about the discriminant locus, the boundary of the moduli space corresponding to singular Calabi-Yau manifolds. A symplectic basis of periods is found and the action of the Sp(6, Z) generators of the modular group is determined. From the mirror map we compute the instanton expansion of the Yukawa couplings and the generalized N = 2 index, arriving at the numbers of instantons of genus zero and genus one of each bidegree. We find that these numbers can be negative, even in genus zero. We also investigate an SL(2, Z) symmetry that acts on a boundary of the moduli space.
引用
收藏
页码:626 / 674
页数:49
相关论文
共 30 条
  • [1] TOPOLOGICAL FIELD-THEORY AND RATIONAL CURVES
    ASPINWALL, PS
    MORRISON, DR
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) : 245 - 262
  • [2] CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY
    ASPINWALL, PS
    GREENE, BR
    MORRISON, DR
    [J]. NUCLEAR PHYSICS B, 1994, 416 (02) : 414 - 480
  • [3] MULTIPLE MIRROR MANIFOLDS AND TOPOLOGY CHANGE IN STRING THEORY
    ASPINWALL, PS
    GREENE, BR
    MORRISON, DR
    [J]. PHYSICS LETTERS B, 1993, 303 (3-4) : 249 - 259
  • [4] BATYREV VV, GENERALIZED HYPERGEO
  • [5] BERGLUND P, CERN TH686593 PREPR
  • [6] HOLOMORPHIC ANOMALIES IN TOPOLOGICAL FIELD-THEORIES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. NUCLEAR PHYSICS B, 1993, 405 (2-3) : 279 - 304
  • [7] CONSTRUCTIONS AND COMPLEXITY OF SECONDARY POLYTOPES
    BILLERA, LJ
    FILLIMAN, P
    STURMFELS, B
    [J]. ADVANCES IN MATHEMATICS, 1990, 83 (02) : 155 - 179
  • [8] TOPOLOGICAL CONFORMAL FIELD-THEORIES AND THE FLAT COORDINATES
    BLOK, B
    VARCHENKO, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (07): : 1467 - 1490
  • [9] CADAVID AC, 1991, PHYS LETT B, V267, P193, DOI 10.1016/0370-2693(91)91247-S
  • [10] A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY
    CANDELAS, P
    DELAOSSA, XC
    GREEN, PS
    PARKES, L
    [J]. NUCLEAR PHYSICS B, 1991, 359 (01) : 21 - 74