A POTENTIAL-REDUCTION VARIANT OF RENEGAR SHORT-STEP PATH-FOLLOWING METHOD FOR LINEAR-PROGRAMMING

被引:5
作者
DENHERTOG, D
ROOS, C
TERLAKY, T
机构
[1] 2628 CD Delft
关键词
D O I
10.1016/0024-3795(91)90266-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new polynomial potential-reduction method for linear programming, which can also be seen as a large-step path-following method. We do an (approximate) linesearch along the Newton direction with respect to Renegar's strictly convex potential function if the iterate is far away from the central trajectory. If the iterate lies close to the trajectory, we update the lower bound for the optimal value. Dependent on this updating scheme, the iteration bound can be proved to be O(square-root n L) or O(nL). Our method differs from the recently published potential-reduction methods in the choice of the potential function and the search direction.
引用
收藏
页码:43 / 68
页数:26
相关论文
共 11 条
[1]  
DENHERTOG D, 1989, 8965 DELFT U TECHN F
[2]  
FREUND R. M., 1988, POLYNOMIAL TIME ALGO
[3]  
GONZAGA C. C., 1989, ES21089 COPPE FED U
[4]  
GONZAGA C. C., 1989, ES21189 COPPE FED U
[5]  
JARRE F, 1989, 165 U WURZB I ANG MA
[6]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[7]  
Nesterov Yu, 1989, SELF CONCORDANT FUNC
[8]   A POLYNOMIAL-TIME ALGORITHM, BASED ON NEWTON METHOD, FOR LINEAR-PROGRAMMING [J].
RENEGAR, J .
MATHEMATICAL PROGRAMMING, 1988, 40 (01) :59-93
[9]  
ROOS C, 1990, GAMES EC OPTIMIZATIO, P433
[10]   AN ALGORITHM FOR LINEAR-PROGRAMMING WHICH REQUIRES O(((M+N)N2+(M+N)1.5N)L) ARITHMETIC OPERATIONS [J].
VAIDYA, PM .
MATHEMATICAL PROGRAMMING, 1990, 47 (02) :175-201