LOWER BOUNDS FOR COMPUTATIONS WITH THE FLOOR OPERATION

被引:12
作者
MANSOUR, Y [1 ]
SCHIEBER, B [1 ]
TIWARI, P [1 ]
机构
[1] IBM CORP, THOMAS J WATSON RES CTR, DIV RES, YORKTOWN HTS, NY 10598 USA
关键词
ALGORITHMS; LOWER BOUND; SQUARE-ROOT; NEWTON ITERATION; MOD OPERATION; FLOOR OPERATION; TRUNCATION;
D O I
10.1137/0220020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A general lower bound technique is developed for computation trees with operations {+, -, *, /, [.], <} and constants {0, 1}, for functions that have as their input a single n-bit integer. The technique applies to many natural functions, such as perfect square root (deciding if the square root of the input is integral or not), computing the parity of [log x], etc. The arguments are then extended to obtain the same lower bounds on the time complexity of any RAM program with operations {+, -, *, /, [.], <} that solves the problem. Another related result is described in a companion paper [Proc. 29th IEEE Symposium on Foundations of Computer Science, 1988] and [J. Assoc. Comput. Mach., 1991, to appear].
引用
收藏
页码:315 / 327
页数:13
相关论文
共 30 条
[11]   ON COMPUTATIONS WITH INTEGER DIVISION [J].
JUST, B ;
AUFDERHEIDE, FM ;
WIGDERSON, A .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1989, 23 (01) :101-111
[12]  
Kung H. T., 1973, Journal of Computer and System Sciences, V7, P334, DOI 10.1016/S0022-0000(73)80027-3
[13]   LOWER TIME-BOUNDS FOR INTEGER PROGRAMMING WITH 2 VARIABLES [J].
LAUTEMANN, C ;
HEIDE, FMAD .
INFORMATION PROCESSING LETTERS, 1985, 21 (02) :101-105
[14]   THE COMPLEXITY OF APPROXIMATING THE SQUARE ROOT [J].
MANSOUR, Y ;
SCHIEBER, B ;
TIWARI, P .
30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, :325-330
[15]  
MANSOUR Y, 1989, LECT NOTES COMPUT SC, V372, P559
[16]  
MANSOUR Y, 1988, RC14271 IBM TJ WATS
[17]  
MANSOUR Y, 1988, 29TH P IEEE S F COMP, P51
[18]  
MANSOUR Y, 1988, TR14272 IBM TJ WATS
[19]  
PATERSON MS, 1972, P S COMPLEXITY COMPU, P41
[20]  
PAUL W, 1981, MONOGRAPHIE ENSEIGME, V30, P331