NONPARAMETRIC FIXED-INTERVAL SMOOTHING WITH VECTOR SPLINES

被引:39
作者
FESSLER, JA [1 ]
机构
[1] STANFORD UNIV,DEPT ELECT ENGN,STANFORD,CA 94305
关键词
D O I
10.1109/78.80907
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spline smoothing has become a popular method for nonparametric exploration and estimation of scalar-valued functions, but its generalizations to vector-valued functions have been underutilized. This paper presents a computationally efficient algorithm for nonparametric smoothing of vector signals with general measurement covariances. This new algorithm provides an alternative to the prevalent "optimal" smoothing algorithms that hinge on (possibly inaccurate) parametric state-space models. We develop and compare automatic procedures that use the measurements to determine how much to smooth; this adaptation allows the data to "speak for itself" without imposing a Gauss-Markov model structure. We present a nonparametric approach to covariance estimation for the case of i.i.d. measurement errors. Monte Carlo simulations demonstrate the performance of the algorithm.
引用
收藏
页码:852 / 859
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 1980, LINEAR SYSTEMS
[2]  
[Anonymous], 1979, OPTIMAL FILTERING
[3]   ILL-POSED PROBLEMS IN EARLY VISION [J].
BERTERO, M ;
POGGIO, TA ;
TORRE, V .
PROCEEDINGS OF THE IEEE, 1988, 76 (08) :869-889
[4]  
Boor CD., 1978, PRACTICAL GUIDE SPLI
[5]  
BUCKLEY MJ, 1988, BIOMETRIKA, V75, P189, DOI 10.1093/biomet/75.2.189
[6]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[7]  
de Hoog FR, 1987, NUMER MATH, V50, P311, DOI 10.1007/BF01390708
[8]   DISTRIBUTION OF MATHEMATICAL SOFTWARE VIA ELECTRONIC MAIL [J].
DONGARRA, JJ ;
GROSSE, E .
COMMUNICATIONS OF THE ACM, 1987, 30 (05) :403-407
[9]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[10]  
FESSLER J, 1989, 11TH P ANN INT C IEE, P561