BIFURCATION TO CHAOTIC SCATTERING

被引:175
作者
BLEHER, S
GREBOGI, C
OTT, E
机构
[1] UNIV MARYLAND,PLASMA RES LAB,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[4] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[5] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
来源
PHYSICA D | 1990年 / 46卷 / 01期
关键词
D O I
10.1016/0167-2789(90)90114-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a novel type of bifurcation to chaos which occurs in the context of chaotic scattering. In chaotic scattering the deflection angle versus impact parameter is singular on a set of impact parameters which is fractal. This behavior is caused by the presence of a chaotic invariant set of unstable bounded orbits. In the bifurcation considered here the chaotic set arises abruptly (in a sense to be discussed) as the particle energy E decreases from above a critical value Em, to below. We call this transition an abrupt bifurcation to fully developed chaotic scattering. Numerical computation of the dimension, d, of the chaotic set shows that, in agreement with theoretical prediction, d ≈ 1/In[(Em - E)-1] near the abrupt bifurcatio. © 1990.
引用
收藏
页码:87 / 121
页数:35
相关论文
共 46 条
[1]   WHY PERIOD-DOUBLING CASCADES OCCUR - PERIODIC ORBIT CREATION FOLLOWED BY STABILITY SHEDDING [J].
ALLIGOOD, KT ;
YORKE, ED ;
YORKE, JA .
PHYSICA D, 1987, 28 (1-2) :197-205
[2]  
BALATONI J, 1956, PUBL MATH I HUNGARIA, V1, P9
[3]   FRACTAL BOUNDARIES FOR EXIT IN HAMILTONIAN-DYNAMICS [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E ;
BROWN, R .
PHYSICAL REVIEW A, 1988, 38 (02) :930-938
[4]   ROUTES TO CHAOTIC SCATTERING [J].
BLEHER, S ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :919-922
[5]   CLASSICAL IRREGULAR SCATTERING AND ITS QUANTUM-MECHANICAL IMPLICATIONS [J].
BLUMEL, R ;
SMILANSKY, U .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :477-480
[6]   ISOLATED UNSTABLE PERIODIC ORBITS [J].
CHURCHILL, RC ;
PECELLI, G ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) :329-348
[7]  
CHURCHILL RC, 1979, LECTURE NOTES PHYSIC, V93, P76
[8]  
CONLEY C, 1967, P US JAPAN SEMINAR D, P443
[9]  
DEVANEY RL, 1986, INTRO CHAOTIC DYNAMI, P249
[10]  
DING M, TRANSITION CHAOTIC S