CONVERGENCE OF A SEMIDISCRETE SCHEME FOR THE CURVE SHORTENING FLOW

被引:75
作者
DZIUK, G
机构
关键词
D O I
10.1142/S0218202594000339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence for a spatial discretization of the curvature flow for curves in possibly higher codimension is proved in L infinity ((0, T), L(2) (R/2 pi)) boolean AND L(2) ((0, T), H-1 (R/2 pi)). Asymptotic convergence in these norms is achieved for the position vector and its time derivative which is proportional to curvature. The underlying algorithm rests on a formulation of mean curvature how which uses the Laplace-Beltrami operator and leads to tridiagonal linear systems which can be easily solved.
引用
收藏
页码:589 / 606
页数:18
相关论文
共 11 条
[1]  
BANSCH E, 1992, P COMPUTATIONAL CRYS
[2]  
DECKELNICK K, 1993, CONVERGENCE FINITE E
[3]  
DZIUK G, 1991, NUMER MATH, V58, P603
[4]  
DZIUK G, 1992, P COMPUTATIONAL CRYS
[5]   ASYMPTOTIC L-INFINITY-ERROR ESTIMATES FOR LINEAR FINITE-ELEMENT APPROXIMATIONS OF QUASILINEAR BOUNDARY-VALUE PROBLEMS [J].
FREHSE, J ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :418-431
[6]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[7]  
GRAYSON MA, 1987, J DIFFER GEOM, V26, P285
[8]  
NOCHETTO RH, 1992, OPTIMAL INTERFACE ER
[9]  
Paolini M., 1992, ASYMPTOTIC ANAL, V5, P553
[10]  
ROBERTS S, 1989, CMAR5889 RES REP