CANONICAL DEMON MONTE-CARLO RENORMALIZATION-GROUP

被引:23
作者
HASENBUSCH, M [1 ]
PINN, K [1 ]
WIECZERKOWSKI, C [1 ]
机构
[1] UNIV MUNSTER, INST THEORET PHYS 1, D-48149 MUNSTER, GERMANY
关键词
D O I
10.1016/0370-2693(94)91383-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a new method to compute renormalized coupling constants in a Monte Carlo renormalization group calculation. The method can be used for a general class of models, e.g., lattice spin or gauge models. The basic idea is to simulate a joint system of block spins and canonical demons. In contrast to the Microcanonical Renormalization Group invented by Creutz et al. our method does not suffer from systematical errors stemming from a simultaneous use of two different ensembles. We present numerical results for the O(3) nonlinear sigma-model.
引用
收藏
页码:308 / 312
页数:5
相关论文
共 10 条
[1]   MONTE-CARLO RENORMALIZATION-GROUP STUDY OF THE 3-DIMENSIONAL ISING-MODEL [J].
BAILLIE, CF ;
GUPTA, R ;
HAWICK, KA ;
PAWLEY, GS .
PHYSICAL REVIEW B, 1992, 45 (18) :10438-10453
[2]   MICROCANONICAL RENORMALIZATION-GROUP [J].
CREUTZ, M ;
GOCKSCH, A ;
OGILVIE, M ;
OKAWA, M .
PHYSICAL REVIEW LETTERS, 1984, 53 (09) :875-877
[3]  
GUPTA R, 1986, 31ST MMM C BALT
[4]  
HASENBUSCH M, UNPUB
[5]   PERFECT LATTICE ACTION FOR ASYMPTOTICALLY FREE THEORIES [J].
HASENFRATZ, P ;
NIEDERMAYER, F .
NUCLEAR PHYSICS B, 1994, 414 (03) :785-814
[6]   RENORMALIZATION GROUP BY MONTE-CARLO METHODS [J].
MA, SK .
PHYSICAL REVIEW LETTERS, 1976, 37 (08) :461-464
[7]   MONTE-CARLO RENORMALIZATION-GROUP ANALYSIS OF THE CLASSICAL HEISENBERG-MODEL IN 2 DIMENSIONS [J].
SHENKER, SH ;
TOBOCHNIK, J .
PHYSICAL REVIEW B, 1980, 22 (09) :4462-4472
[8]   MONTE-CARLO RENORMALIZATION GROUP [J].
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1979, 42 (14) :859-861
[9]  
WILSON KG, 1980, RECENT DEV GAUGE THE
[10]   ASYMPTOTIC FREEDOM AND MASS GENERATION IN THE O(3) NONLINEAR SIGMA-MODEL [J].
WOLFF, U .
NUCLEAR PHYSICS B, 1990, 334 (03) :581-610