STABILITY OF TRAVELING-WAVE SOLUTIONS OF DIFFUSIVE PREDATOR-PREY SYSTEMS

被引:60
作者
GARDNER, R [1 ]
JONES, CKRT [1 ]
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
关键词
D O I
10.2307/2001812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stability of travelling wave solutions of singularly perturbed, diffusive predator-prey systems is proved by showing that the linearized operator about such a solution has no unstable spectrum and that the translation eigenvalue at lambda = 0 is simple. The proof illustrates the application of some recently developed geometric and topological methods for counting eigenvalues,
引用
收藏
页码:465 / 524
页数:60
相关论文
共 12 条
[1]  
ALEXANDER J, UNPUB TOPOLOGICAL IN
[2]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[3]  
FIFE PC, 1979, LECTURE NOTES BIOMAT, V28
[4]  
GARDNER R, IN PRESS J DIFFERENT
[6]  
GARDNER RA, 1990, REACTION DIFFUSION E, P173
[8]  
Kato T., 1966, PERTURBATION THEORY
[9]  
MILNOR JW, 1974, ANN MATH STUDIES, V76
[10]   STABILITY OF SINGULARLY PERTURBED SOLUTIONS TO SYSTEMS OF REACTION-DIFFUSION EQUATIONS [J].
NISHIURA, Y ;
FUJII, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (06) :1726-1770