Melittin (MLT), a 26-residue cationic (net charge +5 at pH 7.2) peptide from bee venom, is well known to be a monomeric, approximately random coil; but when its charges are reduced by titration, by acetylation (net charge +2) or succinylation (net charge -2), or by screening by salt, it goes over to tetrameric alpha-helix. The conversion is promoted by raising the peptide concentration. The tetramer is held together by hydrophobic forces. We have changed the net charge to -6 by acylation with acetylcitric anhydride (a new acylating agent); this anionic derivative forms tetrameric helix at neutral pH, without salt, and at relatively low concentration, conditions under which the cationic MLT does not become helical. Thus, a high net charge is not sufficient to prevent association and helix formation. We have synthesized an anionic melittin analogue of MLT (E-MLT; net charge -4) in which all five lysine and arginine residues are replaced with glutamate, and acetyl and succinyl derivatives of E-MLT (net charges -5 and -6). All three of these are resistant to helix formation. They require much higher NaCl or NaClO4 concentration for helix formation than does MLT. Even CaCl2, MgCl2, and spermine . 4HCl are less effective in helicizing E-MLT than MLT. MLT, at pH 7.2, shows increasing helix as the peptide concentration increases (8-120-mu-M), but E-MLT and its acyl derivatives do not. MLT and acylated MLTs in the helical tetramer show both cold- and heat-induced unfolding, with maximum stability near room temperature. At high temperature, a significant amount of residual structure remains. Heating (to 100-degrees-C) monomeric MLT (i.e., MLT at low concentration) or E-MLT results in a monotonic increase in negative ellipticity. In 1.0 M NaCl, E-MLT (at sufficiently high concentration) also shows cold and hot unfolding. The results are discussed in respect to charge-charge and charge-dipole interactions, and hydrophobic effects. E-MLT is also discussed in relation to proteins of halophilic bacteria, which have higher proportions of anionic residues than do corresponding proteins of non-halphiles.