SOLITON EQUATIONS AND PSEUDOSPHERICAL SURFACES

被引:159
作者
SASAKI, R
机构
[1] The Niels Bohr Institute, University of Copenhagen
关键词
D O I
10.1016/0550-3213(79)90517-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
All the soliton equations in 1 + 1 dimensions that can be solved by the AKNS 2 × 2 inverse scattering method (for example, the sine-Gordon, KdV or modified KdV equations) are shown to describe pseudospherical surfaces, i.e., surfaces of constant negative Gaussian curvature. This result provides a unified picture of all these soliton equations. Geometrical interpretations of characteristic properties like infinite numbers of conservation laws and Bäcklund transformations and of the soliton solutions themselves are presented. The important role of scale transformations as generating one parameter families of pseudospherical surfaces is pointed out. © 1979.
引用
收藏
页码:343 / 357
页数:15
相关论文
共 34 条
[1]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[2]  
BULLOUGH RK, 1979, STRUCTURAL STABILITY
[3]  
Chadan K, 1977, INVERSE PROBLEMS QUA
[4]   GEOMETRICAL PROPERTY OF BACKLUND TRANSFORMATION OF SINE-GORDON EQUATION [J].
CRAMPIN, M ;
MCCARTHY, PJ .
LETTERS IN MATHEMATICAL PHYSICS, 1978, 2 (04) :303-312
[5]   SOLITONS AND SL(2,R) [J].
CRAMPIN, M .
PHYSICS LETTERS A, 1978, 66 (03) :170-172
[6]  
DADDA A, 1979, PHYS LETT C, V49, P23
[7]   PROLONGATION STRUCTURES OF A CLASS OF NON-LINEAR EVOLUTION EQUATIONS [J].
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 359 (1699) :411-433
[8]  
DODD RK, 1977, P ROY SOC LOND A MAT, V352, P481, DOI 10.1098/rspa.1977.0012
[9]  
DODD RT, UNPUBLISHED
[10]  
Eisenhart L.P., 1909, TREATISE DIFFERENTIA