IMPROVED LOWER BOUNDS ON K-INDEPENDENCE

被引:59
作者
CARO, Y [1 ]
TUZA, Z [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1250 BUDAPEST,HUNGARY
关键词
D O I
10.1002/jgt.3190150110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex set Y in a (hyper)graph is called k-independent if in the sub(hyper)graph induced by Y every vertex is incident to less than k edges. We prove a lower bound for the maximum cardinality of a k-independent set-in terms of degree sequences-which strengthens and generalizes several previously known results, including Turan's theorem.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 10 条
[1]   ON TURAN THEOREM FOR SPARSE GRAPHS [J].
AJTAI, M ;
ERDOS, P ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1981, 1 (04) :313-317
[2]   LARGE INDUCED DEGENERATE SUBGRAPHS [J].
ALON, N ;
KAHN, J ;
SEYMOUR, PD .
GRAPHS AND COMBINATORICS, 1987, 3 (03) :203-211
[3]  
Caro Y., 1979, TECHNICAL REPORT TEC
[4]  
CARO Y, UNPUB LARGE INDEPEND
[5]  
Favaron O., 1988, ARS COMBINATORIA, V25, P159
[6]   DEGREES AND INDEPENDENT SETS OF HYPERGRAPHS [J].
HANSEN, P ;
LOREA, M .
DISCRETE MATHEMATICS, 1976, 14 (04) :305-309
[7]   BIPARTITE DENSITY AND THE INDEPENDENCE RATIO [J].
LOCKE, SC .
JOURNAL OF GRAPH THEORY, 1986, 10 (01) :47-53
[8]  
MEYER JC, 1972, CR ACAD SCI A MATH, V274, P144
[9]  
Turan P., 1941, MAT FIZ LAPOK, V48, P436
[10]  
WEI VK, 1981, TM81112179 BELL LAB