SURFACE DECONSTRUCTION AND ROUGHENING IN THE MULTIZIGGURAT MODEL OF WETTING

被引:9
作者
ABRAHAM, DB
FONTES, E
NEWMAN, CM
PIZA, MST
机构
[1] UNIV SAO PAULO, INST MATEMAT & ESTATIST, BR-05389970 SAO PAULO, BRAZIL
[2] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
[3] UNIV CALIF IRVINE, DEPT MATH, IRVINE, CA 92717 USA
关键词
D O I
10.1103/PhysRevE.52.R1257
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We relate a random surface model appropriate for wetting in three dimensions to first-passage percolation for the planar Ising model. This establishes that the macroscopic drop, sitting on a rectangular substrate in the completely wet phase, adopts the shape of a pitched roof. It also suggests that fluctuations about this mean shape are not logarithmic, but rather have a roughness exponent chi = 1/3.
引用
收藏
页码:R1257 / R1260
页数:4
相关论文
共 38 条
[1]   SURFACE RECONSTRUCTION IN CRYSTALS [J].
ABRAHAM, DB .
PHYSICAL REVIEW LETTERS, 1983, 51 (14) :1279-1281
[2]   RANDOM SURFACE CORRELATION-FUNCTIONS [J].
ABRAHAM, DB ;
CHAYES, JT ;
CHAYES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (04) :439-471
[3]   STATISTICAL-MECHANICS OF LATTICE TUBES [J].
ABRAHAM, DB ;
CHAYES, JT ;
CHAYES, L .
PHYSICAL REVIEW D, 1984, 30 (04) :841-843
[4]   SURFACES AND PEIERLS CONTOURS - 3-D WETTING AND 2-D ISING PERCOLATION [J].
ABRAHAM, DB ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (01) :181-200
[5]   WETTING IN A 3-DIMENSIONAL SYSTEM - AN EXACT SOLUTION [J].
ABRAHAM, DB ;
NEWMAN, CM .
PHYSICAL REVIEW LETTERS, 1988, 61 (17) :1969-1972
[6]   THE WETTING TRANSITION IN A RANDOM SURFACE MODEL [J].
ABRAHAM, DB ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) :1097-1111
[7]   NONPERTURBATIVE ANALYSIS OF A MODEL OF RANDOM SURFACES [J].
ABRAHAM, DB ;
CHAYES, JT ;
CHAYES, L .
NUCLEAR PHYSICS B, 1985, 251 (04) :553-564
[8]  
ABRAHAM DB, 1980, PHASE TRANSITIONS CR, V10
[9]  
ABRAHAM DB, UNPUB
[10]  
ALEXANDER K, IN PRESS ANN PROB