PHASE-SHIFT ANALYSIS AND INVERSION TO A POTENTIAL FOR C-12 + C-12 ELASTIC-SCATTERING AT ECM = 9.50 AND 11.38 MEV

被引:8
作者
APAGYI, B
OSTROWSKI, A
SCHEID, W
VOIT, H
机构
[1] UNIV ERLANGEN NURNBERG,INST PHYS,W-8520 ERLANGEN,GERMANY
[2] UNIV GIESSEN,INST THEORET PHYS,W-6300 GIESSEN,GERMANY
关键词
D O I
10.1088/0954-3899/18/1/015
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In order to obtain optical potentials for the elastic scattering of heavy ions from experimental cross sections a two-step procedure is chosen. First, a phase shift analysis of measured angular distributions is carried out. Then, the inverse scattering problem at fixed energy is solved within the modified Newton method. This two-step procedure has been applied to the elastic scattering of C-12 on C-12 at incident energies of E(CM) = 9.50 and 11.38 MeV. Optical potentials for the C-12 + C-12 system are derived.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 28 条
[1]   C-12-C-12 POTENTIAL BY INVERSION [J].
ALLEN, LJ ;
AMOS, K ;
STEWARD, C ;
FIEDELDEY, H .
PHYSICAL REVIEW C, 1990, 41 (05) :2021-2031
[2]  
CHADAN K, 1977, INVERSE PROBLEMS QUA, P199
[3]   NUCLEUS NUCLEUS POTENTIAL FROM THE SCATTERING DATA BY QUASI-CLASSICAL INVERSION [J].
DASILVEIRA, R ;
LECLERCQWILLAIN, C .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1987, 13 (02) :149-159
[4]  
DUCK P, 1975, THESIS U ERLANGEN NU
[5]   SEMICLASSICAL AND QUANTAL INVERSION OF NUCLEAR-SCATTERING AT FIXED ENERGY [J].
FIEDELDEY, H ;
LIPPERHEIDE, R ;
NAIDOO, K ;
SOFIANOS, SA .
PHYSICAL REVIEW C, 1984, 30 (02) :434-440
[6]   A DISCRETE METHOD OF CONSTRUCTING CENTRAL AND ANGULAR-MOMENTUM DEPENDENT POTENTIALS [J].
HOOSHYAR, MA ;
RAZAVY, M .
CANADIAN JOURNAL OF PHYSICS, 1981, 59 (11) :1627-1634
[7]   A METHOD FOR S-MATRIX TO POTENTIAL INVERSION AT FIXED ENERGY .1. METHOD DESCRIPTION AND EVALUATION [J].
IOANNIDES, AA ;
MACKINTOSH, RS .
NUCLEAR PHYSICS A, 1985, 438 (02) :354-383
[8]   S-MATRIX TO POTENTIAL INVERSION AT FIXED ENERGY .2. INCLUSION OF SPIN - CRC EFFECTS IN PROTON-SCATTERING [J].
IOANNIDES, AA ;
MACKINTOSH, RS .
NUCLEAR PHYSICS A, 1987, 467 (03) :482-510
[9]  
KUEHNER JA, 1965, PHYS LETT, V4, P332
[10]   COMPUTATIONAL APPROACH TO INVERSE PROBLEM IN JWKB APPROXIMATION [J].
KUJAWSKI, E .
PHYSICAL REVIEW C, 1973, 8 (01) :100-105