BETHE ANSATZ AND QUANTUM GROUPS - THE LIGHT-CONE LATTICE APPROACH .1. 6 VERTEX AND SOS MODELS

被引:66
作者
DESTRI, C
DEVEGA, HJ
机构
[1] IST NAZL FIS NUCL,GRP COLL PARMA,PARMA,ITALY
[2] CNRS,UA 280-RR69B,F-75005 PARIS,FRANCE
关键词
D O I
10.1016/0550-3213(92)90405-Z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The six-vertex model is solved with fixed boundary conditions (FBC) that guarantee exact SU(2), invariance on the lattice. The algebra of the Yang-Baxter (YB) and SU(2), generators turns to close and the transfer matrix is SU(2)q-invariant for FBC. In addition, the infinite spectral parameter limit of the YB generators yields cleanly the SU(2)q generators. The Bethe ansatz states constructed for FBC are shown to be the highest weights of SU(2)q. The light-cone evolution operator for FBC is introduced and shown to follow from the row-to-row FBC transfer matrix with alternating inhomogeneities. This operator is shown to describe the SOS model after an appropriate gauge choice. Using this FBC light-cone approach, the scaling limit of both six-vertex and SOS models easily follows. Finally, the higher level Bethe ansatz equations (describing the physical excitations) are explicitly derived for FBC.
引用
收藏
页码:692 / 719
页数:28
相关论文
共 22 条
  • [1] SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS
    ALCARAZ, FC
    BARBER, MN
    BATCHELOR, MT
    BAXTER, RJ
    QUISPEL, GRW
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18): : 6397 - 6409
  • [2] 8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    FORRESTER, PJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) : 193 - 266
  • [3] ANALYSIS OF THE BETHE ANSATZ EQUATIONS OF THE XXZ MODEL
    BABELON, O
    DEVEGA, HJ
    VIALLET, CM
    [J]. NUCLEAR PHYSICS B, 1983, 220 (01) : 13 - 34
  • [4] Q-DEFORMATIONS OF THE O(3) SYMMETRIC SPIN-1 HEISENBERG CHAIN
    BATCHELOR, MT
    MEZINCESCU, L
    NEPOMECHIE, RI
    RITTENBERG, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04): : L141 - L144
  • [5] FACTORIZING PARTICLES ON A HALF-LINE AND ROOT SYSTEMS
    CHEREDNIK, IV
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 61 (01) : 977 - 983
  • [6] De Vega H. J., 1990, Nuclear Physics B, Proceedings Supplements, V18A, P229, DOI 10.1016/0920-5632(90)90651-A
  • [7] LIGHT-CONE LATTICE APPROACH TO FERMIONIC THEORIES IN 2D - THE MASSIVE THIRRING MODEL
    DESTRI, C
    DEVEGA, HJ
    [J]. NUCLEAR PHYSICS B, 1987, 290 (03) : 363 - 391
  • [8] ANALYSIS OF THE BETHE-ANSATZ EQUATIONS OF THE CHIRAL-INVARIANT GROSS-NEVEU MODEL
    DESTRI, C
    LOWENSTEIN, JH
    [J]. NUCLEAR PHYSICS B, 1982, 205 (03) : 369 - 385
  • [9] LIGHT-CONE LATTICES AND THE EXACT SOLUTION OF CHIRAL FERMION AND SIGMA-MODELS
    DESTRI, C
    DEVEGA, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1329 - 1353
  • [10] YANG-BAXTER ALGEBRAS, INTEGRABLE THEORIES AND QUANTUM GROUPS
    DEVEGA, HJ
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (10): : 2371 - 2463