PARAXIAL WAVE OPTICS AND HARMONIC-OSCILLATORS

被引:125
作者
NIENHUIS, G
ALLEN, L
机构
[1] Huygens Laboratorium, Rijksuniversiteit Leiden, 2300 RA Leiden
来源
PHYSICAL REVIEW A | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevA.48.656
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The operator algebra of the quantum harmonic oscillator is applied to the description of Gaussian modes of a laser beam. Higher-order modes of the Hermite-Gaussian or the Laguerre-Gaussian form are generated from the fundamental mode by ladder operators. This approach allows the description of both free propagation and refraction by ideal astigmatic lenses. The paraxial optics analog of a coherent state is shown to be a light beam with a displaced beam axis which is refracted by lenses according to geometric optics. The expectation value of the orbital angular momentum of a paraxial beam of light is found to be expressible in terms of a contribution analogous to the angular momentum of the oscillator plus contributions which arise from the ellipticity of the wave fronts and of the light spot. This clarifies the process by which a transfer of orbital angular momentum between a light beam and astigmatic lenses or diaphragms occurs.
引用
收藏
页码:656 / 665
页数:10
相关论文
共 18 条
[1]   BEAM TRANSFORMATIONS AND NONTRANSFORMED BEAMS [J].
ABRAMOCHKIN, E ;
VOLOSTNIKOV, V .
OPTICS COMMUNICATIONS, 1991, 83 (1-2) :123-135
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]  
[Anonymous], 1962, CLASSICAL ELECTRODYN
[4]  
[Anonymous], 1986, LASERS
[5]   GAUSSIAN LIGHT BEAMS WITH GENERAL ASTIGMATISM [J].
ARNAUD, JA ;
KOGELNIK, H .
APPLIED OPTICS, 1969, 8 (08) :1687-&
[6]   ASTIGMATIC LASER MODE CONVERTERS AND TRANSFER OF ORBITAL ANGULAR-MOMENTUM [J].
BEIJERSBERGEN, MW ;
ALLEN, L ;
VANDERVEEN, HELO ;
WOERDMAN, JP .
OPTICS COMMUNICATIONS, 1993, 96 (1-3) :123-132
[7]   ANALOGIES BETWEEN 2 OPTICAL-SYSTEMS (PHOTON-BEAM SPLITTERS AND LASER-BEAMS) AND 2 QUANTUM-SYSTEMS (THE 2-DIMENSIONAL OSCILLATOR AND THE 2-DIMENSIONAL HYDROGEN-ATOM) [J].
DANAKAS, S ;
ARAVIND, PK .
PHYSICAL REVIEW A, 1992, 45 (03) :1973-1977
[8]   FORMAL QUANTUM THEORY OF LIGHT-RAYS [J].
GLOGE, D ;
MARCUSE, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1969, 59 (12) :1629-&
[9]  
Gouy L.G., 1890, CR HEBD ACAD SCI, V110, P1251
[10]  
Haus H. A., 1984, WAVES FIELDS OPTOELE