MEAN ENTROPY OF STATES IN QUANTUM-STATISTICAL MECHANICS

被引:83
作者
LANFORD, OE
ROBINSON, DW
机构
[1] University of California, Berkeley, CA
关键词
D O I
10.1063/1.1664685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The equilibrium states for an infinite system of quantum mechanics may be represented by states over suitably chosen C* algebras. We consider the problem of associating an entropy with these states and finding its properties, such as positivity, subadditivity, etc. For the states of a quantum-spin system, a mean entropy is defined and it is shown that this entropy is affine and upper semicontinuous.
引用
收藏
页码:1120 / &
相关论文
共 14 条
[1]  
Bendat J., 1955, T AM MATH SOC, V79, P58, DOI 10.1090/S0002-9947-1955-0082655-4
[2]  
Choquet G., 1963, ANN I FOURIER GRENOB, V13, P139
[3]   OPERATOR-VALUED ENTROPY OF A QUANTUM MECHANICAL MEASUREMENT [J].
DAVIS, C .
PROCEEDINGS OF THE JAPAN ACADEMY, 1961, 37 (09) :533-&
[4]  
DELBRUCK M, 1937, ABHANDL PREUSS AKAD, P1
[5]  
JOST R, 1947, HELV PHYS ACTA, V20, P491
[6]  
KASTLER D, 1966, COMMUN MATH PHYS, V3, P51
[7]   INTEGRAL REPRESENTATIONS OF INVARIANT STATES ON B] ALGEBRAS [J].
LANFORD, O ;
RUELLE, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (07) :1460-+
[8]  
Lowner C, 1934, MATH Z, V38, P177
[9]   A NOTE ON ENTROPY FOR OPERATOR ALGEBRAS [J].
NAKAMURA, M ;
UMEGAKI, H .
PROCEEDINGS OF THE JAPAN ACADEMY, 1961, 37 (03) :149-&
[10]  
Robinson D., 1967, COMMUN MATH PHYS, V5, P288