COMPLEX-FORMATION BY POSITIVE AND NEGATIVE TRANSLATIONAL REGULATORS OF GCN4

被引:109
作者
CIGAN, AM [1 ]
FOIANI, M [1 ]
HANNIG, EM [1 ]
HINNEBUSCH, AG [1 ]
机构
[1] NICHHD,MOLEC GENET LAB,MOLEC GENET LOWER EUKARYOTES SECT,BETHESDA,MD 20892
关键词
D O I
10.1128/MCB.11.6.3217
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GCN4 is a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae whose expression is regulated by amino acid availability at the translational level. GCD1 and GCD2 are negative regulators required for the repression of GCN4 translation under nonstarvation conditions that is mediated by upstream open reading frames (uORFs) in the leader of GCN4 mRNA. GCD factors are thought to be antagonized by the positive regulators GCN1, GCN2, and GCN3 in amino acid-starved cells to allow for increased GCN4 protein synthesis. Previous genetic studies suggested that GCD1, GCD2, and GCN3 have closely related functions in the regulation of GCN4 expression that involve translation initiation factor 2 (eIF-2). In agreement with these predictions, we show that GCD1, GCD2, and GCN3 are integral components of a high-molecular-weight complex of approximately 600,000 Da. The three proteins copurified through several biochemical fractionation steps and could be coimmunoprecipitated by using antibodies against GCD1 or GCD2. Interestingly, a portion of the eIF-2 present in cell extracts also cofractionated and coimmunoprecipitated with these regulatory proteins but was dissociated from the GCD1/GCD2/GCN3 complex by 0.5 M KCl. Incubation of a temperature-sensitive gcd1-101 mutant at the restrictive temperature led to a rapid reduction in the average size and quantity of polysomes, plus an accumulation of inactive 80S ribosomal couples; in addition, excess amounts of eIF-2-alpha, GCD1, GCD2, and GCN3 were found comigrating with free 40S ribosomal subunits. These results suggest that GCD1 is required for an essential function involving eIF-2 at a late step in the translation initiation cycle. We propose that lowering the function of this high-molecular-weight complex, or of eIF-2 itself, in amino acid-starved cells leads to reduced ribosomal recognition of the uORFs and increased translation initiation at the GCN4 start codon. Our results provide new insights into how general initiation factors can be regulated to affect gene-specific translational control.
引用
收藏
页码:3217 / 3228
页数:12
相关论文
共 56 条
[1]   SUPPRESSION OF RIBOSOMAL REINITIATION AT UPSTREAM OPEN READING FRAMES IN AMINO ACID-STARVED CELLS FORMS THE BASIS FOR GCN4 TRANSLATIONAL CONTROL [J].
ABASTADO, JP ;
MILLER, PF ;
JACKSON, BM ;
HINNEBUSCH, AG .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (01) :486-496
[2]  
AHMAD MF, 1985, J BIOL CHEM, V260, P6955
[3]   AFFINITY LABELING OF EUKARYOTIC INITIATION FACTOR-II AND ELONGATION FACTOR-1-ALPHA-BETA-GAMMA WITH GTP ANALOGS [J].
ANTHONY, DD ;
KINZY, TG ;
MERRICK, WC .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1990, 281 (01) :157-162
[4]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]  
BURKE RL, 1983, J BIOL CHEM, V258, P2193
[7]   YEAST TRANSLATION INITIATION SUPPRESSOR SUI2 ENCODES THE ALPHA-SUBUNIT OF EUKARYOTIC INITIATION FACTOR-II AND SHARES SEQUENCE IDENTITY WITH THE HUMAN ALPHA-SUBUNIT [J].
CIGAN, AM ;
PABICH, EK ;
FENG, L ;
DONAHUE, TF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2784-2788
[8]   MUTATIONAL ANALYSIS OF THE HIS4 TRANSLATIONAL INITIATOR REGION IN SACCHAROMYCES-CEREVISIAE [J].
CIGAN, AM ;
PABICH, EK ;
DONAHUE, TF .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (07) :2964-2975
[9]  
CIGAN AM, UNPUB
[10]  
DEBENEDETTI A, 1983, J BIOL CHEM, V258, P4556