WEBS, VERONESE CURVES, AND BIHAMILTONIAN SYSTEMS

被引:44
作者
GELFAND, IM [1 ]
ZAKHAREVICH, I [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
10.1016/0022-1236(91)90057-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a special kind of multidimensional webs, connected with the Veronese curve. For these webs the foliations in question depend not on a discrete parameter, but on the point on a projective line. For each bihamiltonian system of odd dimension in general position we construct such a web and show how to reconstruct the original bihamiltonian system based on these data. © 1991.
引用
收藏
页码:150 / 178
页数:29
相关论文
共 8 条
[1]  
Arnold VI., 1978, MATH METHODS CLASSIC, DOI 10.1007/978-1-4757-1693-1
[2]  
Gelfand I., 1979, FUNCT ANAL APPL+, V13, P248, DOI 10.1007/BF01078363
[3]   SPECTRAL THEORY OF A PENCIL OF SKEW-SYMMETRIC DIFFERENTIAL-OPERATORS OF 3RD ORDER ON S1 [J].
GELFAND, IM ;
ZAKHAREVICH, IS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (02) :85-93
[4]  
GELFAND IM, 1982, FUNCT ANAL APPL+, V16, P241
[5]  
KRONEKER L, 1968, MATH WERKE B, V3, P139
[6]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[7]  
SANTINI PM, 1988, COMMUN MATH PHYS, V115, P375, DOI 10.1007/BF01218017
[8]  
TURIEL FJ, 1989, CR ACAD SCI I-MATH, V308, P575