SPECTRAL ESTIMATES AND STABLE PROCESSES

被引:24
作者
KLUPPELBERG, C
MIKOSCH, T
机构
[1] Department of Mathematics, ETH-Zürich
关键词
MOVING AVERAGE PROCESSES; GENERAL LINEAR MODEL; STABLE PROCESSES; STABLE LAWS; SPECTRAL ESTIMATE; PERIODOGRAM; CHARACTERISTIC FUNCTION; SPECTRAL MEASURE;
D O I
10.1016/0304-4149(93)90021-U
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X(t) = SIGMA(j=-infinity)infinity psi(j)Z(t-j) be a discrete time moving average process based on i.i.d. symmetric random variables {Z(t)} with a common distribution function from the domain of normal attraction of a p-stable law (0<p<2). We derive the limit distribution of the normalized periodogram I(n),x(lambda) = \n-1/p SIGMA(t=1)n X(t) e(-itlambda)\2, -pi less-than-or-equal-to lambda less-than-or-equal-to pi. This generalizes the classical result for p = 2. In contrast to the classical case, for values 0 < lambda1 < ... < lambda(m) < pi the periodogram ordinates I(n),X(lambda(i)), i = 1,..., m, are not asymptotically independent.
引用
收藏
页码:323 / 344
页数:22
相关论文
共 19 条
[1]  
BROCKWELL PJ, 1987, TIMES SERIES THEORY
[2]   PREDICTION OF STABLE PROCESSES - SPECTRAL AND MOVING AVERAGE REPRESENTATIONS [J].
CAMBANIS, S ;
SOLTANI, AR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (04) :593-612
[3]  
Cornfeld I.P., 1982, ERGODIC THEORY
[4]   LIMIT THEORY FOR MOVING AVERAGES OF RANDOM-VARIABLES WITH REGULARLY VARYING TAIL PROBABILITIES [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF PROBABILITY, 1985, 13 (01) :179-195
[5]   LIMIT THEORY FOR THE SAMPLE COVARIANCE AND CORRELATION-FUNCTIONS OF MOVING AVERAGES [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF STATISTICS, 1986, 14 (02) :533-558
[6]   DISCRETE-TIME STABLE PROCESSES AND THEIR CERTAIN PROPERTIES [J].
HOSOYA, Y .
ANNALS OF PROBABILITY, 1978, 6 (01) :94-105
[7]   HARMONIZABLE STABLE PROCESSES [J].
HOSOYA, Y .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (04) :517-533
[8]  
Ibragimov IA, 1971, INDEPENDENT STATIONA
[9]  
KLUPPELBERG C, 1992, SOME LIMIT THEORY NO
[10]  
KLUPPELBERG C, 1992, PARAMETER ESTIMATION