KNOWLEDGE-BASED HAMILTONIANS;
PROTEIN FOLDING;
PROTEIN STABILITY;
D O I:
10.1002/pro.5560030922
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Pairwise contact energies do not explicitly take protein secondary structure into account, and so provide an incomplete description of conformational energy. In order to construct a Hamiltonian that specifically relates to protein backbone conformations, a simplified backbone angle is used. The pseudodihedral angle (the torsion angle between planes defined by 4 consecutive alpha-carbon atoms) provides a simplified backbone representation and continues to manifest information about secondary-structure elements: the pseudo-Ramachandran plot contains helical and sheetlike regions. The distribution of pseudodihedral angles is highly sensitive to the identity of the central pair of amino acids. Therefore, a sequence-dependent, knowledge-based potential energy was found according to a quasichemical approximation. These functions form complementary additions to the contact potentials currently in use. This pseudodihedral potential greatly enhances the ability to design sequences that are specific to a given conformation and also improves the ability to discriminate a native conformation from many other conformations.