BAYESIAN ROBUSTNESS FOR MULTIPARAMETER PROBLEMS

被引:7
作者
DELAMPADY, M
DEY, DK
机构
[1] INDIAN STAT INST,ECON ANAL UNIT,BANGALORE 560009,INDIA
[2] UNIV CONNECTICUT,DEPT STAT,STORRS,CT 06209
关键词
PHI-DIVERGENCE; EPSILON-CONTAMINATION; CURVATURE;
D O I
10.1016/0378-3758(94)90132-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian robustness is studied for epsilon-contamination classes of prior distributions. Nonparametric classes of contaminations such as the class of all unimodal spherically symmetric densities are considered here. Posterior phi-divergence and its curvature are used to measure the sensitivity of priors on the resulting posterior densities. Examples are provided to illustrate our results.
引用
收藏
页码:375 / 382
页数:8
相关论文
共 6 条
[1]   ROBUST BAYES AND EMPIRICAL BAYES ANALYSIS WITH EPSILON-CONTAMINATED PRIORS [J].
BERGER, J ;
BERLINER, LM .
ANNALS OF STATISTICS, 1986, 14 (02) :461-486
[2]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[3]  
DEY DK, 1990, ROBUST BAYESIAN ANAL
[4]  
GELFAND AE, 1990, STATIST DECISIONS, V9, P63
[5]   RANGES OF POSTERIOR MEASURES FOR PRIORS WITH UNIMODAL CONTAMINATIONS [J].
SIVAGANESAN, S ;
BERGER, JO .
ANNALS OF STATISTICS, 1989, 17 (02) :868-889
[6]  
SIVAGANESAN S, 1991, SENSITIVITY SOME BAY