VECTOR NORMS AS LYAPUNOV FUNCTIONS FOR LINEAR-SYSTEMS

被引:86
作者
KIENDL, H
ADAMY, J
STELZNER, P
机构
[1] VEREINIGTE ELEKTRIZITATSWERKE,DORTMUND,GERMANY
[2] SIEMENS AG,W-8520 ERLANGEN,GERMANY
关键词
D O I
10.1109/9.256362
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we present aa unified theory of quadratic and piecewise-linear Lyapunov functions for continuous and discrete-time linear systems. The key to our work is the description of these Lyapunov functions by vector norms. The main results are sufficient and necessary conditions for a vector norm to be aa Lyapunov function as well as a method (based on these conditions) to construct such Lyapunov functions.
引用
收藏
页码:839 / 842
页数:4
相关论文
共 19 条
[1]   EXISTENCE OF NON-SYMMETRICAL LYAPUNOV FUNCTIONS FOR LINEAR-SYSTEMS [J].
BENZAOUIA, A ;
BURGAT, C .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (04) :597-607
[2]   POSITIVELY INVARIANT POLYHEDRAL-SETS OF DISCRETE-TIME LINEAR-SYSTEMS [J].
BITSORIS, G .
INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (06) :1713-1726
[3]  
DAHLQUIST G, 1959, TRITANA7906 ROY I TE, V130
[4]  
DESOER VA, 1972, IEEE T CIRCUIT THEOR, V19, P480
[5]   MATRIX NORMS AND LOGARITHMIC NORMS [J].
DEUTSCH, E .
NUMERISCHE MATHEMATIK, 1975, 24 (01) :49-51
[6]  
Hahn W., 1967, STABILITY MOTION
[7]  
KARWEINA D, 1989, VDI REIHE 8, V181
[8]  
KIENDL H, 1972, REGELUNGSTECHNIK PRO, P289
[9]  
KIENDL H, 1972, SUBOPTIMALE REGLER
[10]  
Lancaster P., 1985, COMPUTER SCI APPL MA