INTRINSIC ALGEBRAIC CHARACTERIZATION OF SPACE-TIME STRUCTURE

被引:16
作者
BANNIER, U
机构
[1] Fachhochschule Hamburg, Fachbereich MCh, Hamburg
关键词
D O I
10.1007/BF00671024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a partially ordered set of C*-algebras R(1), representing algebras of observables of physical subsystems, we derive a topological Hausdorff space M as a candidate for some generalized ''space-time'' with the help of which one can define a net O --> A(O), O subset of or equal to M, of algebras. This opens a way to define a physical theory without an underlying metaphysical manifold, an aspect which may be relevant for the unification of general relativity and quantum field theory.
引用
收藏
页码:1797 / 1809
页数:13
相关论文
共 15 条
[1]  
BANNIER U, 1987, THESIS HAMBURG
[2]  
BANNIER U, 1988, COMMUNICATIONS MATH, V118, P162
[3]   PRODUCT STATES FOR LOCAL ALGEBRAS [J].
BUCHHOLZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 36 (04) :287-304
[4]  
COMFORT WW, 1961, P AM MATH SOC, V12, P327
[5]  
CONNES A, 1982, P S PURE MATH 2, V38
[6]   ALGEBRAS OF LOCAL OBSERVABLES ON A MANIFOLD [J].
DIMOCK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (03) :219-228
[7]   STANDARD AND SPLIT INCLUSIONS OF VONNEUMANN-ALGEBRAS [J].
DOPLICHER, S ;
LONGO, R .
INVENTIONES MATHEMATICAE, 1984, 75 (03) :493-536
[8]  
FREDENHAGEN K, 1992, 10TH P C MATH PHYS L
[9]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[10]  
Haag R., 1996, LOCAL QUANTUM PHYS F