A NOTE ON OUTER GALOIS THEORY OF RINGS

被引:7
作者
KREIMER, HF
机构
关键词
D O I
10.2140/pjm.1969.31.417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group of automorphisms of a ring B, and let A be the subring of G-invariant elements of B. Call B an outer semi-Galois extension of A, if the centralizer of A in B is the center of B and B is a separable extension of A (i.e., the (B, 2?)-bimodule homomorphism of B ⊗AB onto B, which is determined by the ring multiplication in B, splits). The principal result of this paper is more easily stated here under the additional hypothesis that A is a direct summand of the right A-module B. THEOREM. If B is an outer semi-Galois extension of a subring A0 and A0 is a direct summand of the right A0-module B, then the following statements are equivalent for an intermediate ring A. (1) B is an outer semi-Galois extension of A and A is a direct summand of the right A-module B. (2) B is a projective Frobenius extensionof A. (3) A is the subring of invariant elements of B with respect to a finite group of automorphisms of B (not necessarily a subgroup of G). © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:417 / &
相关论文
共 10 条
[1]  
Auslander M., 1960, T AM MATH SOC, V97, P1
[2]  
Auslander M., 1961, T AM MATH SOC, V97, P367
[3]  
Bourbaki N., 1961, ALGEBRE COMMUTATIVE
[4]  
DEMEYER FR, 1965, OSAKA J MATH, V2, P117
[5]  
JACOBSON N, 1964, LECTURES ABSTRACT AL, V3
[6]  
Kasch F., 1960, S B HEIDELB AKAD WIS, V1961, P87
[7]   A GALOIS THEORY FOR NONCOMMUTATIVE RINGS [J].
KREIMER, HF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 127 (01) :29-&
[8]  
MIYASHITA Y, 1966, J FAC SCI HOKKAIDO U, V19, P114
[9]   GALOIS THEORY FOR RINGS WITH FINITELY MANY IDEMPOTENTS [J].
VILLAMAYOR, OE ;
ZELINSKY, D .
NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (02) :721-+
[10]  
[No title captured]