A RESOLUTION METHOD FOR RICCATI DIFFERENTIAL-SYSTEMS COUPLED IN THEIR QUADRATIC TERMS

被引:11
作者
JODAR, L [1 ]
ABOUKANDIL, H [1 ]
机构
[1] ECOLE SUPER ELECT, SIGNAUX & SYST LAB, CNRS, F-91190 GIF SUR YVETTE, FRANCE
关键词
D O I
10.1137/0519105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1425 / 1430
页数:6
相关论文
共 12 条
[1]   ANALYTIC SOLUTION FOR A CLASS OF LINEAR QUADRATIC OPEN-LOOP NASH GAMES [J].
ABOUKANDIL, H ;
BERTRAND, P .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (03) :997-1002
[2]   THE OPTIMAL PROJECTION EQUATIONS FOR FINITE-DIMENSIONAL FIXED-ORDER DYNAMIC COMPENSATION OF INFINITE-DIMENSIONAL SYSTEMS [J].
BERNSTEIN, DS ;
HYLAND, DC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :122-151
[3]  
Campbell S. L., 1982, SINGULAR SYSTEMS DIF
[4]  
CODDINGTON E, 1968, INTRO ORDINARY DIFFE
[5]  
Cruz J.B., 1971, J OPTIM THEORY APPL, V7, P240, DOI DOI 10.1007/BF00928706
[6]  
Demidovich B.P., 1977, CALCULO NUMERICO FUN
[7]   EXPLICIT SOLUTIONS FOR A SYSTEM OF COUPLED LYAPUNOV DIFFERENTIAL MATRIX EQUATIONS [J].
JODAR, L ;
MARITON, M .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1987, 30 :427-434
[8]  
Ladas G. E., 1972, DIFF EQUAT+
[9]  
MARITON M, 24TH P IEEE C DEC CO, P916
[10]  
Roth W.E., 1934, B AM MATH SOC, V40, P461, DOI DOI 10.1090/S0002-9904-1934-05899-3