GENERA OF ALGEBRAIC-VARIETIES AND COUNTING OF LATTICE POINTS

被引:57
作者
CAPPELL, SE [1 ]
SHANESON, JL [1 ]
机构
[1] UNIV PENN,DEPT MATH,PHILADELPHIA,PA 19104
关键词
D O I
10.1090/S0273-0979-1994-00436-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper announces results on the behavior of some important algebraic and topological invariants - Euler characteristic, arithmetic genus, and their intersection homology analogues; the signature, etc. - and their associated characteristic classes, under morphisms of projective algebraic varieties. The formulas obtained relate global invariants to singularities of general complex algebraic (or analytic) maps. These results, new even for complex manifolds, are applied to obtain a version of Grothendieck-Riemann-Roch, a calculation of Todd classes of toric varieties, and an explicit formula for the number of integral points in a polytope in Euclidean space with integral vertices.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 1972, CARUS MATH MONOGRAPH
[2]  
Beilinson A., 1982, AST RISQUE, V100, P1
[3]  
BRION M, 1988, ANN SCI ECOLE NORM S, V21, P653
[4]  
CAPPELL S, 1991, CR ACAD SCI I-MATH, V313, P293
[5]  
Cappell S. E., 1991, J AM MATH SOC, V4, P521
[6]  
DANILOV VI, 1978, RUSS MATH SURV, V33, P97, DOI [10.1070/RM1978v033n02ABEH002305, DOI 10.1070/RM1978V033N02ABEH002305]
[7]  
DELIGNE P, 1973, LECT NOTES MATH, V340, P268
[8]  
EHRHART E, 1967, J REINE ANGEW MATH, V227, P1
[9]  
FU JH, IN PRESS CURVATURE M
[10]  
Fulton W., 1984, ERGEBNISSE MATH, V2, P1