EIGENVALUES, DIAMETER, AND MEAN DISTANCE IN GRAPHS

被引:203
作者
MOHAR, B
机构
[1] EDVARD KARDELJ UNIV,DEPT MATH,YU-61111 LJUBLJANA,YUGOSLAVIA
[2] OHIO STATE UNIV,COLUMBUS,OH 43210
关键词
D O I
10.1007/BF01789463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that the second smallest eigenvalue lambda-2 of the difference Laplacian matrix of a graph G is related to the expansion properties of G. A more detailed analysis of this relation is given. Upper and lower bounds on the diameter and the mean distance in G in terms of lambda-2 are derived.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 13 条
[1]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[2]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[3]  
Chung F.R.K., 1989, J AM MATH SOC, V2, P187, DOI DOI 10.2307/1990973.MR965008
[4]  
Cvetkovic DM., 1979, SPECTRA GRAPHS
[5]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[6]  
FIEDLER M, 1975, CZECH MATH J, V25, P619
[7]  
GRONE R, 1987, CZECH MATH J, V37, P660
[8]   TRANSPORTATION IN GRAPHS AND THE ADMITTANCE SPECTRUM [J].
MAAS, C .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (01) :31-49
[9]  
MCKAY BD, UNPUB COMMUNICATION
[10]  
Merris R., 1987, LINEAR MULTILINEAR A, V22, P115, DOI DOI 10.1080/030810887088178270636.05021