DIOPHANTINE EQUATION FOR THE 3-DIMENSIONAL QUANTUM HALL-EFFECT

被引:128
作者
KOHMOTO, M
HALPERIN, BI
WU, YS
机构
[1] HARVARD UNIV, LYMAN LAB PHYS, CAMBRIDGE, MA 02138 USA
[2] UNIV UTAH, DEPT PHYS, SALT LAKE CITY, UT 84112 USA
关键词
D O I
10.1103/PhysRevB.45.13488
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When the Fermi level lies in a gap, the Hall conductivity of three-dimensional electrons in a periodic potential is expressed in a topologically invariant form with a set of three integers. If the magnetic fluxes through the three independent areas of the periodic lattice are rational numbers, one obtains a Diophantine equation relating these numbers and the integers which characterize the Hall conductivity.
引用
收藏
页码:13488 / 13493
页数:6
相关论文
共 33 条
[1]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[2]   STABILITY OF GAPS FOR PERIODIC POTENTIALS UNDER VARIATION OF A MAGNETIC-FIELD [J].
AVRON, J ;
SIMON, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12) :2199-2205
[3]   HOMOTOPY AND QUANTIZATION IN CONDENSED MATTER PHYSICS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (01) :51-53
[4]  
Azbel M. Ya, 1964, ZH EKSP TEOR FIZ, V46, P929
[5]   QUANTIZED HALL CONDUCTANCE IN A PERFECT CRYSTAL [J].
DANA, I ;
AVRON, Y ;
ZAK, J .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (22) :L679-L683
[6]   POSSIBLE STATES FOR A 3-DIMENSIONAL ELECTRON-GAS IN A STRONG MAGNETIC-FIELD [J].
HALPERIN, BI .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 :1913-1919
[7]   QUANTIZED HALL CONDUCTANCE, CURRENT-CARRYING EDGE STATES, AND THE EXISTENCE OF EXTENDED STATES IN A TWO-DIMENSIONAL DISORDERED POTENTIAL [J].
HALPERIN, BI .
PHYSICAL REVIEW B, 1982, 25 (04) :2185-2190
[8]   GENERALIZED FLUX STATES ON 3-DIMENSIONAL LATTICE [J].
HASEGAWA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (12) :4384-4393
[9]   ENERGY-LEVELS AND WAVE-FUNCTIONS OF BLOCH ELECTRONS IN RATIONAL AND IRRATIONAL MAGNETIC-FIELDS [J].
HOFSTADTER, DR .
PHYSICAL REVIEW B, 1976, 14 (06) :2239-2249
[10]   THE ROTATION NUMBER FOR ALMOST PERIODIC POTENTIALS [J].
JOHNSON, R ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (03) :403-438