CHAOS AND QUANTUM IRREVERSIBILITY

被引:3
作者
RONCAGLIA, R [1 ]
BONCI, L [1 ]
GRIGOLINI, P [1 ]
WEST, BJ [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO FIS,I-56100 PISA,ITALY
关键词
CHAOS; QUANTUM IRREVERSIBILITY; SPIN-BOSON HAMILTONIAN; WIGNER DISTRIBUTION;
D O I
10.1007/BF01048848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Hamiltonian of a two-level system interacting with a one-mode radiation field by means of the Wigner method and without using the rotating-wave approximation. We show that a phenomenon of collapses and revival, reminiscent of that exhibited by the Jaynes-Cummings model, takes place in the high-coupling limit. This process appears as irreversible or virtually reversible. according to whether the semiclassical regime is chaotic or not. Thus, we find a new mechanism for dissipation in the quantum domain.
引用
收藏
页码:321 / 343
页数:23
相关论文
共 38 条
[1]  
ALLEN L, 1975, OPTICAL RESONANCE 2, pCH1
[2]  
BAILIN H, 1987, DIRECTIONS CHAOS
[3]   DISSIPATION IN A FUNDAMENTAL MODEL OF QUANTUM OPTICAL RESONANCE [J].
BARNETT, SM ;
KNIGHT, PL .
PHYSICAL REVIEW A, 1986, 33 (04) :2444-2448
[4]  
BELOBROV PI, 1976, ZH EKSP TEOR FIZ, V44, P945
[5]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[6]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[7]   QUANTUM IRREVERSIBILITY AND CHAOS [J].
BONCI, L ;
RONCAGLIA, R ;
WEST, BJ ;
GRIGOLINI, P .
PHYSICAL REVIEW LETTERS, 1991, 67 (19) :2593-2596
[8]   BEYOND THE SEMICLASSICAL APPROXIMATION OF THE DISCRETE NONLINEAR SCHRODINGER-EQUATION - COLLAPSES AND REVIVALS AS A SIGN OF QUANTUM FLUCTUATIONS [J].
BONCI, L ;
GRIGOLINI, P ;
VITALI, D .
PHYSICAL REVIEW A, 1990, 42 (08) :4452-4461
[9]  
BUCHLER JR, 1987, ANN NY ACAD SCI, V497
[10]   QUANTUM LIMITATIONS FOR CHAOTIC EXCITATION OF THE HYDROGEN-ATOM IN A MONOCHROMATIC-FIELD [J].
CASATI, G ;
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICAL REVIEW LETTERS, 1984, 53 (27) :2525-2528