ANALYTIC PROPERTIES OF THE EXACT ENERGY OF THE GROUND-STATE OF A 2-ELECTRON ATOM AS A FUNCTION OF 1/Z

被引:15
作者
IVANOV, IA
机构
[1] Institute of Spectroscopy, Academy of Sciences of Russia, Troitsk
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 03期
关键词
D O I
10.1103/PhysRevA.52.1942
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytic properties of the ground-state energy of a two-electron atom as a function of lambda=1/Z are studied. In addition to the previously known singular point of this function, lambda(s) approximate to 1.097 660 79, we find a new singular point lambda(infinity) = infinity in the lambda complex plane. We show that the function E(lambda) has a branch-point singularity of the type lambda(gamma) at this point, where the exponent gamma = 2.06+/-0.005. We find that the ansatz previously proposed to reproduce the asymptotic behavior of the large-order coefficients of the perturbation expansion [Baker et al., Phys. Rev. A 41, 1247 (1990)] can, with slight modification, reproduce the behavior of the exact ground-state energy of the two-electron atom around this singular point. We propose a representation of the exact ground-state energy of helium, possessing the required analytic properties.
引用
收藏
页码:1942 / 1947
页数:6
相关论文
共 20 条
[1]  
ABRAMOWITZ M, 1967, NBS APPLIED MATH SER, V55
[2]  
[Anonymous], 1966, PERTURBATION THEORY
[3]   STUDY OF EIGENVALUE SINGULARITIES FROM PERTURBATION-SERIES - APPLICATION TO 2-ELECTRON ATOMS [J].
ARTECA, GA ;
FERNANDEZ, FM ;
CASTRO, EA .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (03) :1624-1628
[4]  
ARTECA GA, 1990, LECTURE NOTES CHEM, V53
[5]   RADIUS OF CONVERGENCE AND ANALYTIC BEHAVIOR OF THE 1/Z EXPANSION [J].
BAKER, JD ;
FREUND, DE ;
HILL, RN ;
MORGAN, JD .
PHYSICAL REVIEW A, 1990, 41 (03) :1247-1273
[6]   VARIATION-PERTURBATION EXPANSIONS AND PADE APPROXIMANTS TO ENERGY [J].
BRANDAS, E ;
GOSCINSKI, O .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (03) :552-+
[7]  
BRANDAS E, 1972, INT J QUANTUM CHEM, P59
[8]  
BRANDAS E, 1970, INT J QUANTUM CHEM, V4, P571
[9]   Rayleigh-Schrodinger multiple perturbation theory [J].
Dalgarno, A. ;
Drake, G. W. F. .
CHEMICAL PHYSICS LETTERS, 1969, 3 (06) :349-350
[10]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS