THE ROLES OF K5 AND K14 HEAD, TAIL, AND R/K L L E G E DOMAINS IN KERATIN FILAMENT ASSEMBLY INVITRO

被引:129
作者
WILSON, AK
COULOMBE, PA
FUCHS, E
机构
[1] Department of Biological Chemistry, Johns Hopkins University, Baltimore
关键词
D O I
10.1083/jcb.119.2.401
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Type I and type II keratins form obligatory heterodimers, which self-assemble into 10-nm intermediate filaments (IFs). Like all IF proteins, they have a central alpha-helical rod domain, flanked by nonhelical head and tail domains. The IF rod is more highly conserved than head and tail, and within the rod, the carboxy R/K L L E G E sequence is more highly conserved than most other regions. Mutagenesis studies have shed some light on the roles of the head, tail, and R/K L L E G E sequence in 10-nm filament structure. However, interpretations have often been complicated in part because many of these studies have focused on transfected cells, where filament"structure cannot be evaluated. Of the few in vitro assembly studies thus far conducted, comparison of keratin mutants with other IF mutants have often been difficult, due to the obligatory heteropolymeric nature of keratin IFs. In this report, we describe in vitro filament assembly studies on headless, tailless, headless/tailless, and R/K L L E G E truncated mutants of keratin 5 and its partner keratin 14. Using varying conditions of ionic strength and pH, we examine effects of analogous K5 and K14 mutations on the stability of 10-nm filament structure. Using EM, we examine effects of mutations on the ability of subunits/protofibrils to (a) elongate and (b) laterally associate. Our results demonstrate that (a) tails of K5 and K14 are required for filament stabilization; (b) the head of K5, but not of K14, is required for filament elongation and lateral alignments; and (c) the R/K L L E G E domains are required for lateral alignments, but not for filament elongation.
引用
收藏
页码:401 / 414
页数:14
相关论文
共 71 条
[1]   THE NUCLEAR LAMINA IS A MESHWORK OF INTERMEDIATE-TYPE FILAMENTS [J].
AEBI, U ;
COHN, J ;
BUHLE, L ;
GERACE, L .
NATURE, 1986, 323 (6088) :560-564
[2]   UNIFYING PRINCIPLES IN INTERMEDIATE FILAMENT (IF) STRUCTURE AND ASSEMBLY [J].
AEBI, U ;
HANER, M ;
TRONCOSO, J ;
EICHNER, R ;
ENGEL, A .
PROTOPLASMA, 1988, 145 (2-3) :73-81
[3]   THE EXPRESSION OF MUTANT EPIDERMAL KERATIN CDNAS TRANSFECTED IN SIMPLE EPITHELIAL AND SQUAMOUS-CELL CARCINOMA LINES [J].
ALBERS, K ;
FUCHS, E .
JOURNAL OF CELL BIOLOGY, 1987, 105 (02) :791-806
[4]   EXPRESSION OF MUTANT KERATIN CDNAS IN EPITHELIAL-CELLS REVEALS POSSIBLE MECHANISMS FOR INITIATION AND ASSEMBLY OF INTERMEDIATE FILAMENTS [J].
ALBERS, K ;
FUCHS, E .
JOURNAL OF CELL BIOLOGY, 1989, 108 (04) :1477-1493
[5]   AMINO-ACID-SEQUENCE AND GENE ORGANIZATION OF CYTOKERATIN NO-19, AN EXCEPTIONAL TAIL-LESS INTERMEDIATE FILAMENT PROTEIN [J].
BADER, BL ;
MAGIN, TM ;
HATZFELD, M ;
FRANKE, WW .
EMBO JOURNAL, 1986, 5 (08) :1865-1875
[6]   INTERMEDIATE FILAMENTS FORMED DENOVO FROM TAIL-LESS CYTOKERATINS IN THE CYTOPLASM AND IN THE NUCLEUS [J].
BADER, BL ;
MAGIN, TM ;
FREUDENMANN, M ;
STUMPP, S ;
FRANKE, WW .
JOURNAL OF CELL BIOLOGY, 1991, 115 (05) :1293-1307
[7]   PROPERTIES OF THE DESMIN TAIL DOMAIN - STUDIES USING SYNTHETIC PEPTIDES AND ANTIPEPTIDE ANTIBODIES [J].
BIRKENBERGER, L ;
IP, W .
JOURNAL OF CELL BIOLOGY, 1990, 111 (05) :2063-2075
[8]   EPIDERMOLYSIS-BULLOSA SIMPLEX - EVIDENCE IN 2 FAMILIES FOR KERATIN GENE ABNORMALITIES [J].
BONIFAS, JM ;
ROTHMAN, AL ;
EPSTEIN, EH .
SCIENCE, 1991, 254 (5035) :1202-1205
[9]   PHOSPHORYLATION AND DISASSEMBLY OF INTERMEDIATE FILAMENTS IN MITOTIC CELLS [J].
CHOU, YH ;
ROSEVEAR, E ;
GOLDMAN, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (06) :1885-1889
[10]   INTERMEDIATE FILAMENT STRUCTURE .3. ANALYSIS OF SEQUENCE HOMOLOGIES [J].
CONWAY, JF ;
PARRY, DAD .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1988, 10 (02) :79-98