CLASSICAL LIMIT-THEOREMS FOR MEASURE-VALUED MARKOV-PROCESSES

被引:5
作者
KARR, AF
机构
关键词
central limit theorem; law of the iterated logarithm; Markov chain; Markov process; measure-valued stochastic process; random measure; strong law of large numbers;
D O I
10.1016/0047-259X(79)90081-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Laws of large numbers, central limit theorems, and laws of the iterated logarithm are obtained for discrete and continuous time Markov processes whose state space is a set of measures. These results apply to each measure-valued stochastic process itself and not simply to its real-valued functionals. © 1979.
引用
收藏
页码:234 / 247
页数:14
相关论文
共 16 条
[1]   MESURE INVARIANTE SUR LES CLASSES RECURRENTES DES PROCESSUS DE MARKOV [J].
AZEMA, J ;
KAPLANDU.M ;
REVUZ, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (03) :157-&
[2]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[3]  
Blumenthal R.M., 1968, PURE APPL MATH, V29
[4]  
Chung K.L., 1974, COURSE PROBABILITY T, V2nd
[5]  
CINLAR E, 1973, STOCHASTIC POINT PRO
[6]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[7]  
HARRIS TE, 1956, 3RD P BERK S MATH ST, V2, P113
[8]   CLASS OF INTERACTIONS IN AN INFINITE PARTICLE SYSTEM [J].
HOLLEY, R .
ADVANCES IN MATHEMATICS, 1970, 5 (02) :291-&
[9]   CHARACTERIZATION AND CONVERGENCE OF RANDOM MEASURES AND POINT PROCESSES [J].
KALLENBERG, O .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 27 (01) :9-21
[10]  
Kallenberg O., 1976, RANDOM MEASURES