CHAOTIC SYSTEMS - COUNTING THE NUMBER OF PERIODS

被引:8
作者
HAO, BL [1 ]
XIE, FG [1 ]
机构
[1] BEIJING NORMAL UNIV,DEPT PHYS,BEIJING,PEOPLES R CHINA
来源
PHYSICA A | 1993年 / 194卷 / 1-4期
关键词
D O I
10.1016/0378-4371(93)90342-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Characterization of chaotic motion may proceed both at an averaged ''macroscopic'' level, using such notions as Lyapunov exponents, dimensions and entropies, and at a ''microscopic'' level. In the latter case, the number of periodic orbits, being a topological invariant, plays an important role. For various one-dimensional mappings, the counting problem itself has many interesting facets and may be solved more or less completely in different ways. Recent progress in this counting problem is summarized with the hope that the explicit results obtained may be useful for classification of higher-dimensional dissipative chaotic systems.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 21 条
[1]   SYMBOLIC DYNAMICS OF THE CUBIC MAP [J].
CHAVOYAACEVES, O ;
ANGULOBROWN, F ;
PINA, E .
PHYSICA D, 1985, 14 (03) :374-386
[2]   INVARIANT MEASUREMENT OF STRANGE SETS IN TERMS OF CYCLES [J].
CVITANOVIC, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2729-2732
[3]  
DERRIDA B, 1978, ANN I H POINCARE A, V29, P305
[4]  
FINE NJ, 1961, ILLINOIS J MATH, V5, P657
[5]  
GUMOWSKI I, 1980, DYNAMIQUE CHAOTIQUE, P103
[6]   ORGANIZATION OF CHAOS [J].
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1377-1380
[7]  
Hao B.-L., 1989, ELEMENTARY SYMBOLIC
[8]  
HAO BL, 1987, 15 INT C GROUP THEOR, P199
[9]  
HAO BL, 1990, CHAOS, V2, P30
[10]  
HUANG YN, 1992, NUMBER PERIODIC WIND